Herbert Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099396/publications.pdf

Version: 2024-02-01

90 papers 2,625 citations

172457 29 h-index 214800 47 g-index

92 all docs 92 docs citations 92 times ranked 2361 citing authors

#	Article	IF	CITATIONS
1	Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit. Cancer Immunology, Immunotherapy, 2022, 71, 1531-1543.	4.2	11
2	Novel Autoantibodies in Idiopathic Small Fiber Neuropathy. Annals of Neurology, 2022, 91, 66-77.	5.3	9
3	Epstein-Barr virus-induced ectopic CD137 expression helps nasopharyngeal carcinoma to escape immune surveillance and enables targeting by chimeric antigen receptors. Cancer Immunology, Immunotherapy, 2022, 71, 2583-2596.	4.2	4
4	Soluble CD137 is a novel serum marker of liver cirrhosis in patients with hepatitis C and alcoholâ€associated disease etiology. European Journal of Immunology, 2022, 52, 633-645.	2.9	4
5	Ectopic CD137 expression by rhabdomyosarcoma provides selection advantages but allows immunotherapeutic targeting. Oncolmmunology, 2021, 10, 1877459.	4.6	4
6	Regulatory T Cells Inhibit T Cell Activity by Downregulating CD137 Ligand via CD137 Trogocytosis. Cells, 2021, 10, 353.	4.1	6
7	DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nature Communications, 2021, 12, 2284.	12.8	28
8	B7-H7 Is Inducible on T Cells to Regulate Their Immune Response and Serves as a Marker for Exhaustion. Frontiers in Immunology, 2021, 12, 682627.	4.8	7
9	Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics, 2021, 11, 1978.	2.6	4
10	No crossreactivity of anti-SARS-CoV-2 spike protein antibodies with Syncytin-1. Cellular and Molecular Immunology, 2021, 18, 2566-2568.	10.5	18
11	Exosomes, a New Star for Targeted Delivery. Frontiers in Cell and Developmental Biology, 2021, 9, 751079.	3.7	104
12	CD137 negatively affects "browning―of white adipose tissue during cold exposure. Journal of Biological Chemistry, 2020, 295, 2034-2042.	3.4	13
13	CD137 Ligand-CD137 Interaction is Required For Inflammasome-Associated Brain Injury Following Ischemic Stroke. NeuroMolecular Medicine, 2020, 22, 474-483.	3.4	9
14	The role of trogocytosis in immune surveillance of Hodgkin lymphoma. Oncolmmunology, 2020, 9, 1781334.	4.6	9
15	Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Frontiers in Immunology, 2020, 11, 571964.	4.8	9
16	Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis. Scientific Reports, 2020, 10, 18837.	3.3	14
17	CD137 CD137 ligand signalling regulates the immune balance: A potential target for novel immunotherapy of autoimmune diseases. Journal of Autoimmunity, 2020, 112, 102499.	6.5	21
18	CD137 ligand interacts with CD32a to trigger reverse CD137 ligand signaling. Cellular and Molecular Immunology, 2020, 17, 1188-1189.	10.5	4

#	Article	IF	CITATIONS
19	Destroy, what destroys you. Oncolmmunology, 2020, 9, 1685301.	4.6	4
20	The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. Journal of Leukocyte Biology, 2020, 107, 731-738.	3.3	21
21	Deletion of CD137 Ligand Exacerbates Renal and Cutaneous but Alleviates Cerebral Manifestations in Lupus. Frontiers in Immunology, 2019, 10, 1411.	4.8	11
22	Development of a Bispecific Antibody Targeting CD30 and CD137 on Hodgkin and Reed-Sternberg Cells. Frontiers in Oncology, 2019, 9, 945.	2.8	16
23	CD137L-DCs, Potent Immune-Stimulators—History, Characteristics, and Perspectives. Frontiers in Immunology, 2019, 10, 2216.	4.8	21
24	The Progress of Investigating the CD137-CD137L Axis as a Potential Target for Systemic Lupus Erythematosus. Cells, 2019, 8, 1044.	4.1	6
25	Increased Akt-Driven Glycolysis Is the Basis for the Higher Potency of CD137L-DCs. Frontiers in Immunology, 2019, 10, 868.	4.8	11
26	Epstein–Barr virus-encoded LMP1 induces ectopic CD137 expression on Hodgkin and Reed–Sternberg cells via the PI3K-AKT-mTOR pathway. Leukemia and Lymphoma, 2019, 60, 2697-2704.	1.3	20
27	Induction of CD137 expression by viral genes reduces T cell costimulation. Journal of Cellular Physiology, 2019, 234, 21076-21088.	4.1	14
28	Plasma Factors for the Differentiation of Hodgkin's Lymphoma and Diffused Large B Cell Lymphoma and for Monitoring Remission. Journal of Hematology (Brossard, Quebec), 2019, 8, 47-54.	1.0	5
29	CD137L dendritic cells induce potent response against cancer-associated viruses and polarize human CD8+ T cells to Tc1 phenotype. Cancer Immunology, Immunotherapy, 2018, 67, 893-905.	4.2	24
30	Anti-CD137 Cancer Immunotherapy Suppresses Tumor Growthâ€"Letter. Cancer Research, 2018, 78, 1571-1571.	0.9	5
31	Hiding in Plain Sight: Soluble Immunomodulatory Receptors. Trends in Immunology, 2018, 39, 771-774.	6.8	9
32	Endothelial dysfunction in systemic lupus erythematosus – a case-control study and an updated meta-analysis and meta-regression. Scientific Reports, 2017, 7, 7320.	3.3	44
33	CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncolmmunology, 2016, 5, e1113367.	4.6	60
34	Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Scientific Reports, 2016, 6, 29712.	3.3	10
35	HepaCAM associates with connexin 43 and enhances its localization in cellular junctions. Scientific Reports, 2016, 6, 36218.	3.3	27
36	CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncolmmunology, 2016, 5, e1160188.	4.6	18

3

#	Article	IF	CITATIONS
37	Sourcing of an Alternative Pericyte-Like Cell Type from Peripheral Blood in Clinically Relevant Numbers for Therapeutic Angiogenic Applications. Molecular Therapy, 2015, 23, 510-522.	8.2	28
38	Trogocytic CD137 transfer causes an internalization of CD137 ligand on murine APCs leading to reduced T cell costimulation. Journal of Leukocyte Biology, 2015, 97, 909-919.	3.3	17
39	4-1BB Chimeric Antigen Receptors. Cancer Journal (Sudbury, Mass), 2014, 20, 134-140.	2.0	48
40	CD137 ligand signalling induces differentiation of primary acute myeloid leukaemia cells. British Journal of Haematology, 2014, 165, 134-144.	2.5	8
41	Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Immunobiology, 2014, 219, 78-86.	1.9	4
42	Regulation of Myelopoiesis by CD137L Signaling. International Reviews of Immunology, 2014, 33, 454-469.	3.3	7
43	Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB Journal, 2013, 27, 2957-2966.	0.5	19
44	Ectopic CD137 expression facilitates the escape of Hodgkin and Reed-Sternberg cells from immunosurveillance. Oncolmmunology, 2013, 2, e23441.	4.6	13
45	CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses. Oncolmmunology, 2013, 2, e26859.	4.6	27
46	Expression of CD137 on Hodgkin and Reed–Sternberg Cells Inhibits T-cell Activation by Eliminating CD137 Ligand Expression. Cancer Research, 2013, 73, 652-661.	0.9	64
47	CD137 ligand signaling enhances myelopoiesis during infections. European Journal of Immunology, 2013, 43, 1555-1567.	2.9	16
48	CD137 Facilitates the Resolution of Acute DSS-Induced Colonic Inflammation in Mice. PLoS ONE, 2013, 8, e73277.	2.5	13
49	CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging. Aging, 2013, 5, 643-652.	3.1	10
50	Development of Experimental Autoimmune Encephalomyelitis Critically Depends on CD137 Ligand Signaling. Journal of Neuroscience, 2012, 32, 18246-18252.	3.6	32
51	CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. Journal of Neuroinflammation, 2012, 9, 173.	7.2	56
52	Admission levels of soluble CD137 are increased in patients with acute pancreatitis and are associated with subsequent complications. Experimental and Molecular Pathology, 2012, 92, 1-6.	2.1	10
53	Species Difference of CD137 Ligand Signaling in Human and Murine Monocytes. PLoS ONE, 2011, 6, e16129.	2.5	22
54	Biphasic activity of CD137 ligand-stimulated monocytes on T cell apoptosis and proliferation. Journal of Leukocyte Biology, 2011, 89, 707-720.	3.3	6

#	Article	IF	CITATIONS
55	Involvement of the Cytokine Receptor CD137 in Murine Hematopoiesis. Advances in Experimental Medicine and Biology, 2011, 691, 375-382.	1.6	2
56	CD137 ligand signaling induces human monocyte to dendritic cell differentiation. European Journal of Immunology, 2010, 40, 1938-1949.	2.9	48
57	CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. Journal of Leukocyte Biology, 2010, 89, 21-29.	3.3	141
58	Inhibition of Proliferation and Induction of Apoptosis in Multiple Myeloma Cell Lines by CD137 Ligand Signaling. PLoS ONE, 2010, 5, e10845.	2.5	21
59	Regulation of Granulocyte and Macrophage Populations of Murine Bone Marrow Cells by G-CSF and CD137 Protein. PLoS ONE, 2010, 5, e15565.	2.5	29
60	CD137, implications in immunity and potential for therapy. Frontiers in Bioscience - Landmark, 2009, Volume, 4173.	3.0	42
61	CD137 ligand reverse signaling has multiple functions in human dendritic cells during an adaptive immune response. European Journal of Immunology, 2008, 38, 1024-1032.	2.9	54
62	Induction of Proliferation and Monocytic Differentiation of Human CD34+ Cells by CD137 Ligand Signaling. Stem Cells, 2008, 26, 2372-2381.	3.2	35
63	Characterisation of soluble murine CD137 and its association with systemic lupus. Molecular Immunology, 2008, 45, 3990-3999.	2.2	30
64	CD137 Induces Proliferation of Murine Hematopoietic Progenitor Cells and Differentiation to Macrophages. Journal of Immunology, 2008, 181, 3923-3932.	0.8	45
65	CD137 is expressed on blood vessel walls at sites of inflammation and enhances monocyte migratory activity. FASEB Journal, 2007, 21, 456-463.	0.5	101
66	Signal transduction mechanisms of CD137 ligand in human monocytes. Cellular Signalling, 2007, 19, 1899-1908.	3.6	33
67	OX40 interactions in gastrointestinal nematode infection. Immunology, 2006, 117, 108-116.	4.4	5
68	Significance of Reverse Signal Transduction for the Biology of the CD137 Receptor/Ligand System. , 2006, , 29-45.		1
69	Biological activities of reverse signal transduction through CD137 ligand. Journal of Leukocyte Biology, 2005, 77, 281-286.	3.3	67
70	Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochemistry International, 2004, 44, 381-392.	3.8	40
71	OX40 (CD134) Blockade Inhibits the Co-stimulatory Cascade and Promotes Heart Allograft Survival. Transplantation, 2004, 78, 807-814.	1.0	36
72	Expression of CD137 and its ligand in human neurons, astrocytes, and microglia: Modulation by FGFâ€2. Journal of Neuroscience Research, 2003, 74, 67-73.	2.9	40

#	Article	IF	CITATIONS
73	CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. Journal of Leukocyte Biology, 2002, 72, 35-42.	3.3	60
74	In vitro and in vivo activities of OX40 (CD134)-IgG fusion protein isoforms with different levels of immune-effector functions. Journal of Leukocyte Biology, 2002, 72, 522-9.	3.3	18
75	Identification of a soluble OX40 isoform: development of a specific and quantitative immunoassay. Journal of Immunological Methods, 2001, 255, 67-72.	1.4	21
76	CD137 Expression in Tumor Vessel Walls. American Journal of Clinical Pathology, 2001, 115, 543-549.	0.7	87
77	Comparative Analysis of CD137 and LPS Effects on Monocyte Activation, Survival, and Proliferation. Biochemical and Biophysical Research Communications, 2000, 273, 117-122.	2.1	58
78	EXPRESSION OF SOLUBLE CD137 CORRELATES WITH ACTIVATION-INDUCED CELL DEATH OF LYMPHOCYTES. Cytokine, 2000, 12, 742-746.	3.2	48
79	CD137 Induces Proliferation and Endomitosis in Monocytes. Blood, 1999, 94, 3161-3168.	1.4	92
80	Identification of CD137 as a potent monocyte survival factor. Journal of Leukocyte Biology, 1999, 65, 829-833.	3.3	70
81	CD137 Induces Proliferation and Endomitosis in Monocytes. Blood, 1999, 94, 3161-3168.	1.4	5
82	A soluble form of CD137 (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. European Journal of Immunology, 1998 , 28 , 290 - 295 .	2.9	126
83	A soluble form of CD137 (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis., 1998, 28, 290.		1
84	A soluble form of CD137 (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis., 1998, 28, 290.		2
85	CD137, a Member of the Tumor Necrosis Factor Receptor Family, Is Located on Chromosome 1p36, in a Cluster of Related Genes, and Colocalizes with Several Malignancies. Biochemical and Biophysical Research Communications, 1997, 235, 699-703.	2.1	23
86	Differentiation-dependent and stimulus-specific expression of ILA, the human 4-1BB-homologue, in cells of mesenchymal origin. Osteoarthritis and Cartilage, 1997, 5, 394-406.	1.3	19
87	Recovery of functional, recombinant baculovirus-produced proteins from insoluble precipitates in insect cells. Technical Tips Online, 1997, 2, 30-31.	0.2	0
88	The nerve growth factor/tumor necrosis factor receptor family. Journal of Leukocyte Biology, 1996, 60, 1-7.	3.3	54
89	A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene, 1995, 164, 311-315.	2.2	53
90	A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene, 1993, 134, 295-298.	2.2	114