
Afsheen Aman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 2013, 139, 1081-1086.	8.2	128
2	Production & Characterization of a Unique Dextran from an Indigenous <i>Leuconostoc mesenteroides </i> CMG713. International Journal of Biological Sciences, 2008, 4, 379-386.	6.4	124
3	Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers, 2014, 99, 331-338.	10.2	102
4	Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 2014, 102, 622-626.	10.2	78
5	Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydrate Polymers, 2012, 87, 910-915.	10.2	70
6	Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnology, 2014, 14, 49.	3.3	65
7	Purification and Characterization of Novel α-Amylase from Bacillus subtilis KIBGE HAS. AAPS PharmSciTech, 2011, 12, 255-261.	3.3	62
8	Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. International Journal of Biological Macromolecules, 2015, 75, 121-127.	7.5	53
9	Polygalacturonase: Production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21. Carbohydrate Polymers, 2012, 90, 387-391.	10.2	52
10	Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. Journal of Radiation Research and Applied Sciences, 2014, 7, 478-485.	1.2	50
11	Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiology, 2018, 18, 192.	3.3	50
12	Immobilization of pectin depolymerising polygalacturonase using different polymers. International Journal of Biological Macromolecules, 2016, 82, 127-133.	7.5	48
13	Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Scientific Reports, 2021, 11, 10500.	3.3	47
14	Characterization of pectin degrading polygalacturonase produced by Bacillus licheniformis KIBGE-IB21. Food Hydrocolloids, 2015, 43, 819-824.	10.7	34
15	Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBCE-IB25. International Journal of Biological Macromolecules, 2015, 78, 243-248.	7.5	32
16	Hyper production of cellulose degrading endo (1,4) β-d-glucanase from Bacillus licheniformis KIBGE-IB2. Journal of Radiation Research and Applied Sciences, 2015, 8, 160-165.	1.2	32
17	Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix. Biochemistry and Biophysics Reports, 2015, 4, 250-256.	1.3	31
18	Calcium alginate matrix increases the stability and recycling capability of immobilized endo-l²-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles, 2015, 19, 819-827.	2.3	30

#	Article	IF	CITATIONS
19	Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 on chitosan beads for continuous degradation of pectin polymers. Biocatalysis and Agricultural Biotechnology, 2014, 3, 282-287.	3.1	28
20	Utilization of agro waste pectin for the production of industrially important polygalacturonase. Heliyon, 2017, 3, e00330.	3.2	27
21	Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. International Journal of Biological Macromolecules, 2018, 111, 917-922.	7.5	26
22	A new flavanenol with urease-inhibition activity isolated from roots of manna plant camelthorn (Alhagi maurorum). Journal of Molecular Structure, 2010, 965, 65-67.	3.6	25
23	Morphological and molecular based identification of pectinase producing Bacillus licheniformis from rotten vegetable. Journal of Genetic Engineering and Biotechnology, 2015, 13, 139-144.	3.3	24
24	Dextranase: Hyper production of dextran degrading enzyme from newly isolated strain of Bacillus licheniformis. Carbohydrate Polymers, 2013, 92, 2149-2153.	10.2	23
25	Bioconversion of Colloidal Chitin Using Novel Chitinase from Glutamicibacter uratoxydans Exhibiting Anti-fungal Potential by Hydrolyzing Chitin Within Fungal Cell Wall. Waste and Biomass Valorization, 2020, 11, 4129-4143.	3.4	22
26	Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess and Biosystems Engineering, 2015, 38, 631-638.	3.4	21
27	Phenotypic and molecular characterization of Aspergillus species for the production of starch-saccharifying amyloglucosidase. Annals of Microbiology, 2015, 65, 2287-2291.	2.6	21
28	Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 31-38.	5.3	21
29	Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent. International Journal of Biological Macromolecules, 2018, 115, 643-650.	7.5	21
30	Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101341.	3.1	20
31	Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy. International Journal of Biological Macromolecules, 2017, 103, 744-750.	7.5	19
32	Comparison of composting of chemically pretreated and fermented sugarcane bagasse for zero-waste biorefinery. Journal of Material Cycles and Waste Management, 2021, 23, 911-921.	3.0	19
33	Chitosan hydrogel microspheres: an effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency. Bioprocess and Biosystems Engineering, 2017, 40, 451-461.	3.4	18
34	Bacteriocin (BAC-IB17): screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pakistan Journal of Pharmaceutical Sciences, 2012, 25, 195-201.	0.2	18
35	High production of cellulose degrading endo-1,4-β-d-glucanase using bagasse as a substrate from Bacillus subtilis KIBGE HAS. Carbohydrate Polymers, 2013, 91, 300-304.	10.2	17
36	Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family. International Journal of Biological Macromolecules, 2017, 96, 70-77.	7.5	17

#	Article	IF	CITATIONS
37	Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pakistan Journal of Pharmaceutical Sciences, 2013, 26, 691-7.	0.2	17
38	Low molecular weight dextran: Immobilization of cells of Leuconostoc mesenteroides KIBGE HA1 on calcium alginate beads. Carbohydrate Polymers, 2012, 87, 2589-2592.	10.2	16
39	Utilization of corncob xylan as a sole carbon source for the biosynthesis of endo-1,4-β xylanase from Aspergillus niger KIBCE-IB36. Bioresources and Bioprocessing, 2017, 4, .	4.2	16
40	Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBCE-IB33 for continuous production of glucose. International Journal of Biological Macromolecules, 2019, 135, 1252-1260.	7.5	14
41	Strain improvement by mutation for enhanced production of starchâ€saccharifying glucoamylase from <i>Bacillus licheniformis</i> . Starch/Staerke, 2013, 65, 875-884.	2.1	13
42	Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatalysis and Agricultural Biotechnology, 2016, 5, 99-103.	3.1	12
43	Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family. Catalysis Letters, 2018, 148, 2643-2653.	2.6	12
44	Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101256.	3.1	12
45	Production of commercially important enzymes from Bacillus licheniformis KIBGE-IB3 using date fruit wastes as substrate. Journal of Genetic Engineering and Biotechnology, 2020, 18, 46.	3.3	12
46	Effect of Metal Ions, Solvents and Surfactants on the Activity of Protease from Aspergillus niger KIBGE-IB36. Journal of Basic & Applied Sciences, 0, 13, 491-495.	0.8	12
47	Mutational analysis and characterization of dextran synthesizing enzyme from wild and mutant strain of Leuconostoc mesenteroides. Carbohydrate Polymers, 2013, 91, 209-216.	10.2	11
48	Enhanced production of cellulose degrading CMCase by newly isolated strain of Aspergillus versicolor. Carbohydrate Polymers, 2014, 104, 199-203.	10.2	11
49	Production of α-1,4-glucosidase from Bacillus licheniformis KIBCE-IB4 by utilizing sweet potato peel. Environmental Science and Pollution Research, 2017, 24, 4058-4066.	5.3	11
50	Algal biomass: A sustainable, economical and renewable approach for microbial production of pectinolytic enzymes using submerged and solid state fermentation techniques. Biocatalysis and Biotransformation, 2017, 35, 442-449.	2.0	11
51	Polyacrylamide beads: Polymer entrapment increases the catalytic efficiency and thermal stability of protease. Molecular Catalysis, 2018, 446, 81-87.	2.0	11
52	Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: Utilization of agar-agar as an organic matrix for immobilization. Carbohydrate Research, 2019, 486, 107860.	2.3	11
53	Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese. International Journal of Peptide Research and Therapeutics, 2020, 26, 1751-1764.	1.9	11
54	Single step immobilization of CMCase within agarose gel matrix: Kinetics and thermodynamic studies. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111583.	5.0	11

#	Article	IF	CITATIONS
55	Immobilization of Dextranase Using Anionic Natural Polymer Alginate as a Matrix for the Degradation of a Long-Chain Biopolymer (Dextran). International Journal of Polymer Science, 2019, 2019, 1-8.	2.7	10
56	Encapsulation of pectinase within polyacrylamide gel: characterization of its catalytic properties for continuous industrial uses. Heliyon, 2020, 6, e04578.	3.2	10
57	Partial purification and some properties of alpha-amylase from Bacillus subtilis KIBGE-HAS. Indian Journal of Biochemistry and Biophysics, 2009, 46, 401-4.	0.0	10
58	Structural elucidation and cytotoxic analysis of a fructan based biopolymer produced extracellularly by Zymomonas mobilis KIBGE-IB14. Carbohydrate Research, 2021, 499, 108223.	2.3	9
59	Characterization of dextransucrase immobilized on calcium alginate beads from Leuconostoc mesenteroides PCSIR-4. Italian Journal of Biochemistry, 2007, 56, 158-62.	0.3	9
60	Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal of Genetic Engineering and Biotechnology, 2018, 16, 17-22.	3.3	8
61	Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes. Applied Biochemistry and Biotechnology, 2016, 179, 383-397.	2.9	7
62	Role of Anionic Polysaccharide (Alginate) on Activity, Stability and Recycling Efficiency of Bacterial Endo (1→4) β-d-Glucanase of GH12 Family. Catalysis Letters, 2017, 147, 1792-1801.	2.6	7
63	Hyper Production of Î'â€Galactosidase From Newly Isolated Strain of <i>Aspergillus nidulans</i> . Journal of Food Process Engineering, 2017, 40, e12452.	2.9	7
64	Purification and catalytic behavior optimization of lactose degrading β-galactosidase from Aspergillus nidulans. Journal of Food Science and Technology, 2019, 56, 167-176.	2.8	7
65	Continuous Production of Dextran from Immobilized Cells of Leuconostoc mesenteroides KIBGE HA1 Using Acrylamide as a Support. Indian Journal of Microbiology, 2011, 51, 279-282.	2.7	6
66	A Comparative Study Among Different Protocols of Immobilization of Dextranase Using Chitin as a Matrix. Catalysis Letters, 2020, 150, 613-622.	2.6	6
67	Degradation of Long Chain Polymer (Dextran) Using Thermostable Dextranase from Hydrothermal Spring Isolate (<i>Bacillus megaterium</i>). Geomicrobiology Journal, 2019, 36, 683-693.	2.0	5
68	Enhanced biosynthesis of dextransucrase: A multivariate approach to produce a glucosyltransferase for biocatalysis of sucrose into dextran. International Journal of Biological Macromolecules, 2018, 115, 776-785.	7.5	4
69	Improvement of Lactobacillus plantarum for the enhanced production of bacteriocin like inhibitory substance using combinatorial approach. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101386.	3.1	4
70	Inhibitory mechanism of BAC-IB17 against β-lactamase mediated resistance in methicillin-resistant Staphylococcus aureus and application as an oncolytic agent. Microbial Pathogenesis, 2020, 149, 104499.	2.9	4
71	Thermodynamics, kinetics and optimization of catalytic behavior of polyacrylamide-entrapped carboxymethyl cellulase (CMCase) for prospective industrial use. Bioprocess and Biosystems Engineering, 2021, 44, 2417-2427.	3.4	4
72	In vitro application of bacteriocin produced by <i>Lactiplantibacillus plantarum</i> for the biopreservation of meat at refrigeration temperature. Journal of Food Processing and Preservation, 2022, 46, e16159.	2.0	4

#	Article	IF	CITATIONS
73	Enhanced production of maltase (α-glucosidase) from newly isolated strain of Bacillus licheniformis KIBGE-IB4. Pakistan Journal of Pharmaceutical Sciences, 2014, 27, 1437-42.	0.2	4
74	Xylan deterioration approach: Purification and catalytic behavior optimization of a novel β-1,4-d-xylanohydrolase from Geobacillus stearothermophilus KIBGE-IB29. Biotechnology Reports (Amsterdam, Netherlands), 2019, 21, e00299.	4.4	3
75	Significance of metal ions, solvents and surfactants to improve the xylan degrading behavior of β-1,4-D-xylanohydrolase from Geobacillus stearothermophilus KIBGE-IB29. Biocatalysis and Agricultural Biotechnology, 2019, 17, 242-246.	3.1	3
76	Exploration of a three-dimensional matrix as micro-reactor in the form of reactive polyaminosaccharide hydrogel beads using multipoint covalent interaction approach. Biotechnology Letters, 2022, 44, 299-319.	2.2	3
77	Estimation of total and direct serum bilirubin using modified micro assay method. Italian Journal of Biochemistry, 2007, 56, 171-5.	0.3	3
78	Purification and Characterization of a Thermostable Starchâ€Saccharifying Alphaâ€1,4â€Glucanâ€Glucohydrolase Produced by <i>Bacillus licheniformis</i> . Starch/Staerke, 2019, 71, 1800352.	2.1	2
79	Germination potential index of Sindh rice cultivars on biochemical basis, using amylase as an indicator. African Journal of Biotechnology, 2011, 10, .	0.6	2
80	Plasmid borne BAC-IB17: Localization of a potential antibacterial positive marker (Bac+) encoded broad inhibitory spectrum bacteriocin. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1331-5.	0.2	2
81	Polyacrylamide hydrogel carrier (matrix-type macrogel beads): Improvement in the catalytic behavior, stability, and reusability of industrially valuable xylanase from a thermophile Geobacillus stearothermophilus. Current Research in Biotechnology, 2022, 4, 229-237.	3.7	2
82	Maltose deterioration approach: Catalytic behavior optimization and stability profile of maltase from Bacillus licheniformis KIBGE-IB4. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00400.	4.4	1
83	Influence of different metals on the activation and inhibition of α-amylase from thermophilic Bacillus firmus KIBGE-IB28. Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 1275-8.	0.2	1
84	Role of nutrients and environmental conditions for the production of dextransucrase from L. mesenteroides KIBGE-IB26. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1939-45.	0.2	0
85	Hyper-production of levansucrase from Zymomonas mobilis KIBGEIB14 using submerged fermentation technique. Pakistan Journal of Pharmaceutical Sciences, 2017, 30, 2053-2059.	0.2	Ο
86	REPORT- Role of metal ions on the catalytic efficiency of dextran hydrolyzing biocatalyst. Pakistan Journal of Pharmaceutical Sciences, 2019, 32, 2761-2764.	0.2	0