Karen I Winey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/409831/publications.pdf

Version: 2024-02-01

		41627	45040
157	9,804 citations	51	94
papers	citations	h-index	g-index
158	158	158	9433
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ordered Nanostructures in Thin Films of Precise Ion-Containing Multiblock Copolymers. ACS Central Science, 2022, 8, 388-393.	5.3	5
2	Melt polycondensation of carboxytelechelic polyethylene for the design of degradable segmented copolyester polyolefins. Polymer Chemistry, 2022, 13, 3116-3125.	1.9	10
3	Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte. Macromolecules, 2022, 55, 4692-4702.	2.2	19
4	Hydronium ion diffusion in model proton exchange membranes at low hydration: insights from <i>ab initio</i> molecular dynamics. Journal of Materials Chemistry A, 2021, 9, 2448-2458.	5.2	25
5	Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules, 2021, 54, 4269-4279.	2.2	21
6	Effect of surface properties and polymer chain length on polymer adsorption in solution. Journal of Chemical Physics, 2021, 155, 034701.	1.2	14
7	Fluorine-Free Precise Polymer Electrolyte for Efficient Proton Transport: Experiments and Simulations. Chemistry of Materials, 2021, 33, 6041-6051.	3.2	20
8	Anhydrous Proton Transport within Phosphonic Acid Layers in Monodisperse Telechelic Polyethylenes. Journal of the American Chemical Society, 2021, 143, 16725-16733.	6.6	10
9	Sub-3-Nanometer Domain Spacings of Ultrahigh-χ Multiblock Copolymers with Pendant Ionic Groups. ACS Nano, 2021, 15, 16738-16747.	7.3	13
10	Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity. Journal of the American Chemical Society, 2020, 142, 857-866.	6.6	72
11	Percolated Ionic Aggregate Morphologies and Decoupled Ion Transport in Precise Sulfonated Polymers Synthesized by Ring-Opening Metathesis Polymerization. Macromolecules, 2020, 53, 8960-8973.	2.2	27
12	A Curated Experimental Compilation Analyzed by Theory Is More than a Review. Macromolecules, 2020, 53, 6099-6101.	2.2	0
13	Polymer Conformations and Diffusion through a Monolayer of Confining Nanoparticles. Macromolecules, 2020, 53, 8171-8180.	2.2	8
14	Creep attenuation in glassy polymer nanocomposites with variable polymer–nanoparticle interactions. Soft Matter, 2020, 16, 8912-8924.	1.2	14
15	Correlation between backbone and pyridine dynamics in poly(2â€vinyl pyridine)/silica polymer nanocomposites. Journal of Polymer Science, 2020, 58, 2906-2913.	2.0	2
16	Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules, 2020, 53, 3933-3939.	2.2	25
17	Characterizing the Areal Density and Desorption Kinetics of Physically Adsorbed Polymer in Polymer Nanocomposite Melts. Macromolecules, 2020, 53, 2744-2753.	2.2	19
18	Ionomers from Step-Growth Polymerization: Highly Ordered Ionic Aggregates and Ion Conduction. Macromolecules, 2020, 53, 1777-1784.	2.2	9

#	Article	IF	CITATIONS
19	Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science, 2020, 105, 101242.	11.8	195
20	Conformation and dynamics of ring polymers under symmetric thin film confinement. Journal of Chemical Physics, 2020, 153, 184905.	1.2	8
21	Increased Polymer Diffusivity in Thin-Film Confinement. Macromolecules, 2019, 52, 6116-6125.	2.2	17
22	Chain and Ion Dynamics in Precise Polyethylene Ionomers. Macromolecules, 2019, 52, 7939-7950.	2.2	23
23	Periodic Polyethylene Sulfonates from Polyesterification: Bulk and Nanoparticle Morphologies and Ionic Conductivities. Macromolecules, 2019, 52, 8466-8475.	2.2	20
24	Nanoscale layers in polymers to promote ion transport. Molecular Systems Design and Engineering, 2019, 4, 252-262.	1.7	16
25	Impact of building block structure on ion transport in cyclopropenium-based polymerized ionic liquids. Polymer Chemistry, 2019, 10, 2832-2839.	1.9	11
26	Monodisperse and Telechelic Polyethylenes Form Extended Chain Crystals with Ionic Layers. Macromolecules, 2019, 52, 4949-4956.	2.2	28
27	Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers, 2019, 11, 876.	2.0	47
28	Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations. Macromolecules, 2019, 52, 2513-2520.	2.2	30
29	Multiscale Dynamics of Small, Attractive Nanoparticles and Entangled Polymers in Polymer Nanocomposites. Macromolecules, 2019, 52, 2181-2188.	2.2	36
30	The evolution of acidic and ionic aggregates in ionomers during microsecond simulations. Journal of Chemical Physics, 2019, 150, 064901.	1.2	19
31	Polymer Conformations and Dynamics under Confinement with Two Length Scales. Macromolecules, 2019, 52, 217-226.	2.2	24
32	Segmental Diffusion in Attractive Polymer Nanocomposites: A Quasi-Elastic Neutron Scattering Study. Macromolecules, 2019, 52, 669-678.	2.2	25
33	Impact of Hydration and Sulfonation on the Morphology and Ionic Conductivity of Sulfonated Poly(phenylene) Proton Exchange Membranes. Macromolecules, 2019, 52, 857-876.	2.2	61
34	Ion Transport in Cyclopropenium-Based Polymerized Ionic Liquids. Macromolecules, 2018, 51, 1681-1687.	2.2	45
35	Deformation-induced morphology evolution of precise polyethylene ionomers. Polymer, 2018, 144, 184-191.	1.8	17
36	Solution-grown crystals of precise acid- and ion-containing polyethylenes. Polymer, 2018, 135, 111-119.	1.8	16

#	Article	IF	CITATIONS
37	Precision Sulfonic Acid Polyolefins via Heterogenous to Homogenous Deprotection. Macromolecular Chemistry and Physics, 2018, 219, 1700634.	1.1	16
38	Polymer Diffusion Is Fastest at Intermediate Levels of Cylindrical Confinement. Macromolecules, 2018, 51, 9789-9797.	2.2	20
39	Comparing Morphological Evolution during Tensile Deformation of Two Precise Polyethylenes via 2D Fitting of <i>in Situ</i> X-ray Scattering. Macromolecules, 2018, 51, 7942-7950.	2.2	9
40	Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nature Materials, 2018, 17, 725-731.	13.3	187
41	<i>>50th Anniversary Perspective</i> : Are Polymer Nanocomposites Practical for Applications?. Macromolecules, 2017, 50, 714-731.	2.2	491
42	Chain Folding Produces a Multilayered Morphology in a Precise Polymer: Simulations and Experiments. Journal of the American Chemical Society, 2017, 139, 3747-3755.	6.6	53
43	Polymer and spherical nanoparticle diffusion in nanocomposites. Journal of Chemical Physics, 2017, 146, 203331.	1.2	52
44	Nanoscale Aggregation in Acid- and Ion-Containing Polymers. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 499-523.	3.3	48
45	Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. Journal of Chemical Physics, 2017, 146, 203332.	1.2	36
46	Polymer Diffusion from Attractive and Athermal Substrates. Macromolecules, 2017, 50, 3038-3042.	2.2	21
47	Designing tougher elastomers with ionomers. Science, 2017, 358, 449-450.	6.0	23
48	Nanorod Mobility Influences Polymer Diffusion in Polymer Nanocomposites. ACS Macro Letters, 2017, 6, 869-874.	2.3	10
49	High Morphological Order in a Nearly Precise Acid-Containing Polymer and Ionomer. ACS Macro Letters, 2017, 6, 947-951.	2.3	20
50	Transverse Orientation of Acid Layers in the Crystallites of a Precise Polymer. Macromolecules, 2017, 50, 8988-8995.	2.2	17
51	Development of Diffraction Scanning Techniques for Beam Sensitive Polymers Microscopy and Microanalysis, 2016, 22, 492-493.	0.2	2
52	Temperature-Dependent Suppression of Polymer Diffusion in Polymer Nanocomposites. ACS Macro Letters, 2016, 5, 735-739.	2.3	37
53	In memory of professor Edward J. Kramer. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 117-117.	2.4	0
54	Influence of the Bound Polymer Layer on Nanoparticle Diffusion in Polymer Melts. ACS Macro Letters, 2016, 5, 1141-1145.	2.3	91

#	Article	IF	Citations
55	Heterogeneous Chain Dynamics and Aggregate Lifetimes in Precise Acid-Containing Polyethylenes: Experiments and Simulations. Macromolecules, 2016, 49, 9176-9185.	2.2	22
56	High Melting Precision Sulfone Polyethylenes Synthesized by ADMET Chemistry. Macromolecular Chemistry and Physics, 2016, 217, 2351-2359.	1.1	28
57	Role of Periodicity and Acid Chemistry on the Morphological Evolution and Strength in Precise Polyethylenes. Macromolecules, 2016, 49, 8209-8218.	2.2	27
58	Predicting the solution morphology of a sulfonated pentablock copolymer in binary solvent mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 254-262.	2.4	19
59	Polymerized ionic liquid diblock copolymers: impact of water/ion clustering on ion conductivity. Soft Matter, 2016, 12, 1133-1144.	1.2	33
60	In memory of professor Edward J. Kramer. Journal of Polymer Science Part A, 2016, 54, 227-227.	2.5	0
61	Entanglements in polymer nanocomposites containing spherical nanoparticles. Soft Matter, 2016, 12, 2567-2574.	1.2	61
62	Precise Sulfite Functionalization of Polyolefins via ADMET Polymerization. ACS Macro Letters, 2015, 4, 624-627.	2.3	22
63	Silica nanoparticles densely grafted with PEO for ionomer plasticization. RSC Advances, 2015, 5, 19570-19580.	1.7	9
64	Hierarchical Acrylic Acid Aggregate Morphologies Produce Strain-Hardening in Precise Polyethylene-Based Copolymers. Macromolecules, 2015, 48, 3713-3724.	2.2	43
65	Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter, 2015, 11, 382-388.	1.2	75
66	lonic aggregate dissolution and conduction in a plasticized single-ion polymer conductor. Polymer, 2015, 59, 133-143.	1.8	44
67	Direct Comparisons of X-ray Scattering and Atomistic Molecular Dynamics Simulations for Precise Acid Copolymers and Ionomers. Macromolecules, 2015, 48, 1210-1220.	2,2	89
68	Dynamics of Precise Ethylene Ionomers Containing Ionic Liquid Functionality. Macromolecules, 2015, 48, 410-420.	2.2	42
69	Bromide and Hydroxide Conductivity–Morphology Relationships in Polymerized Ionic Liquid Block Copolymers. Macromolecules, 2015, 48, 4850-4862.	2.2	55
70	Synthesis and X-ray Characterization of Cobalt Phosphide (Co ₂ P) Nanorods for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 8108-8115.	7.3	132
71	Local Polymer Dynamics and Diffusion in Cylindrical Nanoconfinement. Macromolecules, 2015, 48, 2324-2332.	2.2	51
72	Ion States and Transport in Styrenesulfonate Methacrylic PEO ₉ Random Copolymer Ionomers. Macromolecules, 2015, 48, 7273-7285.	2.2	37

#	Article	IF	Citations
73	Fast Nanorod Diffusion through Entangled Polymer Melts. ACS Macro Letters, 2015, 4, 952-956.	2.3	39
74	Wellâ€Defined Imidazolium ABA Triblock Copolymers as Ionicâ€Liquidâ€Containing Electroactive Membranes. Macromolecular Chemistry and Physics, 2014, 215, 1319-1331.	1.1	36
75	Structure, dynamics and primitive path network of polymer nanocomposites containing spherical nanoparticles. Materials Research Society Symposia Proceedings, 2014, 1619, 1.	0.1	3
76	Nanoparticle Brush Architecture Controls Polymer Diffusion in Nanocomposites. Macromolecules, 2014, 47, 2404-2410.	2,2	44
77	Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths. Macromolecules, 2014, 47, 777-790.	2.2	179
78	High Ion Content Siloxane Phosphonium Ionomers with Very Low <i>T</i> _g . Macromolecules, 2014, 47, 4428-4437.	2.2	48
79	Entanglement Reduction and Anisotropic Chain and Primitive Path Conformations in Polymer Melts under Thin Film and Cylindrical Confinement. Macromolecules, 2014, 47, 6462-6472.	2.2	84
80	Fast Polymer Diffusion through Nanocomposites with Anisotropic Particles. ACS Macro Letters, 2014, 3, 886-891.	2.3	23
81	Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors. Macromolecules, 2014, 47, 3145-3153.	2.2	63
82	Topological entanglement length in polymer melts and nanocomposites by a DPD polymer model. Soft Matter, 2013, 9, 3877.	1.2	67
83	Room Temperature Morphologies of Precise Acid- and Ion-Containing Polyethylenes. Macromolecules, 2013, 46, 9003-9012.	2.2	66
84	Temperature Dependence of Polymer Diffusion in MWCNT/PS Nanocomposites. Macromolecules, 2013, 46, 2317-2322.	2.2	28
85	Hydroxyalkyl-Containing Imidazolium Homopolymers: Correlation of Structure with Conductivity. Macromolecules, 2013, 46, 3037-3045.	2.2	52
86	Universal Scaling of Polymer Diffusion in Nanocomposites. ACS Macro Letters, 2013, 2, 485-490.	2.3	67
87	Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers. Macromolecules, 2013, 46, 5290-5300.	2.2	156
88	Polymer Chain Conformations in CNT/PS Nanocomposites from Small Angle Neutron Scattering. Macromolecules, 2013, 46, 5345-5354.	2.2	50
89	Do Attractive Polymer–Nanoparticle Interactions Retard Polymer Diffusion in Nanocomposites?. Macromolecules, 2013, 46, 4502-4509.	2.2	113
90	High Hydroxide Conductivity in Polymerized Ionic Liquid Block Copolymers. ACS Macro Letters, 2013, 2, 575-580.	2.3	111

#	Article	IF	Citations
91	Excluded Volume Model for the Reduction of Polymer Diffusion into Nanocomposites. Journal of Physical Chemistry B, 2013, 117, 15675-15683.	1.2	37
92	Morphological Trends in Precise Acid- and Ion-Containing Polyethylenes at Elevated Temperature. Macromolecules, 2013, 46, 8995-9002.	2.2	44
93	Resistive switching in silver/polystyrene/silver nano-gap devices. Applied Physics Letters, 2013, 103, .	1.5	27
94	Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR. Materials, 2012, 5, 1508-1527.	1.3	14
95	Environmental chamber for in situ dynamic control of temperature and relative humidity during x-ray scattering. Review of Scientific Instruments, 2012, 83, 025112.	0.6	14
96	Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity. Soft Matter, 2012, 8, 6512.	1.2	95
97	Polymerized Ionic Liquid Block and Random Copolymers: Effect of Weak Microphase Separation on Ion Transport. Macromolecules, 2012, 45, 7027-7035.	2.2	164
98	Precision Ionomers: Synthesis and Thermal/Mechanical Characterization. Macromolecules, 2012, 45, 681-687.	2.2	78
99	Synthesis of Imidazolium-Containing ABA Triblock Copolymers: Role of Charge Placement, Charge Density, and Ionic Liquid Incorporation. Macromolecules, 2012, 45, 4749-4757.	2.2	69
100	Ionic Aggregate Structure in Ionomer Melts: Effect of Molecular Architecture on Aggregates and the Ionomer Peak. Journal of the American Chemical Society, 2012, 134, 574-587.	6.6	148
101	Molecular Mobility and Cation Conduction in Polyether–Ester–Sulfonate Copolymer Ionomers. Macromolecules, 2012, 45, 3962-3973.	2.2	67
102	Precise Acid Copolymer Exhibits a Face-Centered Cubic Structure. ACS Macro Letters, 2012, 1, 71-74.	2.3	31
103	Entanglements and Dynamics of Polymer Melts near a SWCNT. Macromolecules, 2012, 45, 7274-7281.	2.2	48
104	The impact of zinc neutralization on the structure and dynamics of precise polyethylene acrylic acid ionomers: A solid-state 13C NMR study. Polymer, 2012, 53, 3917-3927.	1.8	22
105	Simulations and generalized model of the effect of filler size dispersity on electrical percolation in rod networks. Physical Review B, 2012, 86, .	1.1	80
106	Dynamic Patterning in PEO-Based Single Ion Conductors for Li Ion Batteries. Macromolecules, 2012, 45, 4354-4362.	2.2	45
107	Correlating backboneâ€toâ€backbone distance to ionic conductivity in amorphous polymerized ionic liquids. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 338-346.	2.4	122
108	Structure–Property Relationships of Waterâ€Soluble Ammonium–Ionene Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 965-972.	1.1	25

#	Article	IF	CITATIONS
109	Polymer Tracer Diffusion Exhibits a Minimum in Nanocomposites Containing Spherical Nanoparticles. Macromolecules, 2011, 44, 191-193.	2.2	26
110	Influence of Cation Type on Structure and Dynamics in Sulfonated Polystyrene Ionomers. Macromolecules, 2011, 44, 5420-5426.	2.2	49
111	Structure and Dynamics of Zinc-Neutralized Sulfonated Polystyrene Ionomers. Macromolecules, 2011, 44, 2791-2798.	2.2	63
112	Macromolecular Diffusion in a Crowded Polymer Nanocomposite. Macromolecules, 2011, 44, 3494-3501.	2.2	124
113	Alkylâ€Substituted <i>N</i> àêVinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities. Macromolecular Chemistry and Physics, 2011, 212, 2522-2528.	1.1	139
114	Resistive Switching in Bulk Silver Nanowire-Polystyrene Composites. Advanced Functional Materials, 2011, 21, 233-240.	7.8	66
115	Imidazolium Polyesters: Structure–Property Relationships in Thermal Behavior, Ionic Conductivity, and Morphology. Advanced Functional Materials, 2011, 21, 708-717.	7.8	94
116	Electrical Percolation Behavior in Silver Nanowire–Polystyrene Composites: Simulation and Experiment. Advanced Functional Materials, 2010, 20, 2709-2716.	7.8	173
117	Temperature dependence of thermal conductivity enhancement in single-walled carbon nanotube/polystyrene composites. Applied Physics Letters, 2010, 96, .	1.5	59
118	Nanoscale Morphology in Precisely Sequenced Poly(ethylene- <i>co</i> -acrylic acid) Zinc Ionomers. Journal of the American Chemical Society, 2010, 132, 8165-8174.	6.6	159
119	Multi-Length Scale Morphology of Poly(ethylene oxide)-Based Sulfonate Ionomers with Alkali Cations at Room Temperature. Macromolecules, 2010, 43, 4223-4229.	2.2	76
120	Effect of Ionic Liquid on Mechanical Properties and Morphology of Zwitterionic Copolymer Membranes. Macromolecules, 2010, 43, 790-796.	2.2	61
121	Influence of the Degree of Sulfonation on the Structure and Dynamics of Sulfonated Polystyrene Copolymers. Macromolecules, 2010, 43, 10498-10504.	2.2	52
122	Synthesis and Characterization of Novel Segmented Polyionenes Based on Polydimethylsiloxane Soft Segments. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 215-224.	1.2	10
123	Polymer Diffusion Exhibits a Minimum with Increasing Single-Walled Carbon Nanotube Concentration. Macromolecules, 2009, 42, 7091-7097.	2.2	54
124	Minimum in Diffusion Coefficient with Increasing MWCNT Concentration Requires Tracer Molecules To Be Larger than Nanotubes. Macromolecules, 2009, 42, 8365-8369.	2.2	33
125	Polymerized Ionic Liquids: The Effect of Random Copolymer Composition on Ion Conduction. Macromolecules, 2009, 42, 4809-4816.	2.2	194
126	Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Physical Review B, 2009, 79, .	1.1	149

#	Article	IF	Citations
127	Reconciling STEM and X-ray Scattering Data To Determine the Nanoscale Ionic Aggregate Morphology in Sulfonated Polystyrene Ionomers. Macromolecules, 2008, 41, 6134-6140.	2.2	7 5
128	Quantitative Morphology Study of Cu-Neutralized Poly(styrene-ran-methacrylic acid) lonomers:Â STEM Imaging, X-ray Scattering, and Real-Space Structural Modeling. Macromolecules, 2007, 40, 1081-1088.	2.2	47
129	Polymer Nanocomposites. MRS Bulletin, 2007, 32, 314-322.	1.7	610
130	Nanoscale Morphology of Poly(styrene-ran-methacrylic acid) lonomers:Â The Role of Preparation Method, Thermal Treatment, and Acid Copolymer Structure. Macromolecules, 2007, 40, 3223-3228.	2.2	25
131	Synthesis and Morphology of Well-Defined Poly(ethylene- <i>co</i> -acrylic acid) Copolymers. Macromolecules, 2007, 40, 6564-6571.	2.2	177
132	Reconciling STEM and X-ray Scattering Data from a Poly(styrene-ran-methacrylic acid) Ionomer:Â Ionic Aggregate Size. Macromolecules, 2006, 39, 5174-5176.	2.2	33
133	An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1513-1519.	2.4	154
134	Single Wall Carbon Nanotube/Polyethylene Nanocomposites:Â Nucleating and Templating Polyethylene Crystallites. Macromolecules, 2006, 39, 2964-2971.	2.2	301
135	Transport Properties of Sulfonated Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities. Macromolecules, 2006, 39, 399-407.	2.2	171
136	Ionic aggregates in Zn- and Na-neutralized poly(ethylene-ran-methacrylic acid) blown films. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3549-3554.	2.4	16
137	Toward Reconciling STEM and SAXS Data from lonomers by Investigating Gold Nanoparticles. Macromolecules, 2005, 38, 9251-9257.	2.2	14
138	Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Physical Review B, 2005, 72, .	1.1	530
139	Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites. Materials Research Society Symposia Proceedings, 2004, 858, 214.	0.1	2
140	Deconvolution of scanning transmission electron microscopy images of ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 319-326.	2.4	9
141	Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3333-3338.	2.4	433
142	A Correlation between Lamellar Contraction and Applied Shear Stress in Diblock Copolymers. Macromolecules, 2002, 35, 3596-3600.	2.2	12
143	Local acid environment in poly(ethylene-ran-methacrylic acid) ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2833-2841.	2.4	22
144	Dynamics of Kink Bands in Layered Liquids:Â Theory and in Situ SAXS Experiments on a Block Copolymer Melt. Macromolecules, 2001, 34, 7858-7867.	2.2	15

#	ARTICLE	lF	CITATIONS
145	Spherical and vesicular ionic aggregates in Zn-neutralized sulfonated polystyrene ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 477-483.	2.4	51
146	Spherical and vesicular ionic aggregates in Zn-neutralized sulfonated polystyrene ionomers. , 2001, 39, 477.		1
147	Investigating polymer blend miscibility with forward recoil spectrometry. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1547-1552.	2.4	7
148	lonic Nano-Aggregates in Polyethylene-Based Ionomers: Comparison of Stem and Saxs Results. Microscopy and Microanalysis, 2000, 6, 1110-1111.	0.2	1
149	Imaging Ionic Aggregates in Zn-Neutralized Sulfonated Polystyrene Ionomers: Shape and Spatial Heterogeneity. Microscopy and Microanalysis, 2000, 6, 1112-1113.	0.2	3
150	Asymmetric Miscibility in Random Copolymer/Homopolymer Blends:Â Monomeric Size and Polarity. Macromolecules, 2000, 33, 73-79.	2.2	10
151	Ionic Aggregates in Partially Zn-Neutralized Poly(ethylene-ran-methacrylic acid) Ionomers:Â Shape, Size, and Size Distribution. Macromolecules, 2000, 33, 507-513.	2.2	63
152	Does plastic deformation proceed near thermodynamic equilibrium? The case made for shear-strained lamellar diblock copolymers. Journal of Applied Physics, 1999, 85, 6392-6399.	1.1	12
153	Modifying a Polystyrene/Poly(methyl methacrylate) Interface with Poly(styrene-co-methyl) Tj ETQq1 1 0.784314	rgBT _{.2} /Ove	rlock 10 Tf 50
154	Kink Bands in a Lamellar Diblock Copolymer Induced by Large Amplitude Oscillatory Shear. Macromolecules, 1996, 29, 8180-8187.	2.2	43
155	Melt intercalation of polystyrene in layered silicates. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1443-1449.	2.4	99
156	Dewetting of Polymer Bilayers: Morphology and Kinetics. Materials Research Society Symposia Proceedings, 1994, 366, 71.	0.1	1
157	Decoupled Cation Transport within Layered Assemblies in Sulfonated and Crystalline Telechelic Polyethylenes. Macromolecules, 0, , .	2.2	4