
Junichiro Shiomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4096587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting thermal conductivity and interface conductance at the nanoscale. International Journal of Heat and Mass Transfer, 2022, 183, 122056.	4.8	6
2	Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach. Journal of Physics Condensed Matter, 2022, 34, 135702.	1.8	1
3	Negligible contribution of inter-dot coherent modes to heat conduction in quantum-dot superlattice. Materials Today Physics, 2022, 22, 100601.	6.0	3
4	A novel strategy for GaN-on-diamond device with a high thermal boundary conductance. Journal of Alloys and Compounds, 2022, 905, 164076.	5.5	11
5	Phase-transition-induced giant Thomson effect for thermoelectric cooling. Applied Physics Reviews, 2022, 9, .	11.3	13
6	Metal–organic framework coated porous structures for enhanced thermoelectric performance. Energy Conversion and Management, 2022, 255, 115289.	9.2	6
7	P-TRANS: A Monte Carlo ray-tracing software to simulate phonon transport in arbitrary nanostructures. Computer Physics Communications, 2022, 276, 108361.	7.5	6
8	Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science, 2022, 376, 738-743.	12.6	82
9	Anharmonic phonon renormalization and thermal transport in the type-I <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Ba </mml:mi> <mml:r clathrate from first principles. Physical Review B, 2022, 106, .</mml:r </mml:msub></mml:mrow></mml:math 	nn 88 ×/mm	ıl:r a n>
10	Photonic design for color compatible radiative cooling accelerated by materials informatics. International Journal of Heat and Mass Transfer, 2022, 195, 123193.	4.8	14
11	Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams. Matter, 2021, 4, 276-289.	10.0	20
12	Ultimate impedance of coherent heat conduction in van der Waals graphene-MoS2 heterostructures. Materials Today Physics, 2021, 16, 100324.	6.0	19
13	Electronic transport descriptors for the rapid screening of thermoelectric materials. Materials Horizons, 2021, 8, 2463-2474.	12.2	16
14	Heat diffusion-related damping process in a highly precise coarse-grained model for nonlinear motion of SWCNT. Scientific Reports, 2021, 11, 563.	3.3	2
15	Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction. ACS Nano, 2021, 15, 1436-1444.	14.6	59
16	Reduction of interface thermal resistance between TIM and metal surface by tuning wettability. Transactions of the JSME (in Japanese), 2021, 87, 21-00023-21-00023.	0.2	1
17	Thermal Nanostructure Design by Materials Informatics. Springer Series in Materials Science, 2021, , 153-195.	0.6	0
18	Above-room-temperature giant thermal conductivity switching in spintronic multilayers. Applied Physics Letters, 2021, 118, .	3.3	18

#	Article	IF	CITATIONS
19	Phonon transport in multiphase nanostructured silicon fabricated by high-pressure torsion. Journal of Applied Physics, 2021, 129, .	2.5	8
20	Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ï‰ method. Review of Scientific Instruments, 2021, 92, 034902.	1.3	6
21	Optimized Tamm-plasmon structure by Differential Evolution algorithm for single and dual peaks hot-electron photodetection. Optical Materials, 2021, 113, 110857.	3.6	2
22	Scalable monolayer-functionalized nanointerface for thermal conductivity enhancement in copper/diamond composite. Carbon, 2021, 175, 299-306.	10.3	17
23	Modulation of Interfacial Thermal Transport between Fumed Silica Nanoparticles by Surface Chemical Functionalization for Advanced Thermal Insulation. ACS Applied Materials & Interfaces, 2021, 13, 17404-17411.	8.0	12
24	Nanoconfinement between Graphene Walls Suppresses the Near-Wall Diffusion of the Ionic Liquid [BMIM][PF6]. Journal of Physical Chemistry B, 2021, 125, 4527-4535.	2.6	8
25	Weaker bonding can give larger thermal conductance at highly mismatched interfaces. Science Advances, 2021, 7, .	10.3	35
26	Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning. Physical Review Materials, 2021, 5, .	2.4	27
27	Heat conduction below diffusive limit in amorphous superlattice structures. Nano Energy, 2021, 84, 105903.	16.0	6
28	Thermal properties of single-walled carbon nanotube forests with various volume fractions. International Journal of Heat and Mass Transfer, 2021, 171, 121076.	4.8	6
29	Strain-induced band modulation of thermal phonons in carbon nanotubes. Physical Review B, 2021, 104, .	3.2	3
30	Akhiezer mechanism dominates relaxation of propagons in amorphous material at room temperature. Journal of Applied Physics, 2021, 130, .	2.5	6
31	Synergistic phonon scattering in epitaxial silicon multilayers with germanium nanodot inclusions. Physical Review B, 2021, 104, .	3.2	2
32	Tailoring the surface morphology of carbon nanotube forests by plasma etching: A parametric study. Carbon, 2021, 180, 204-214.	10.3	14
33	Thermal transport by phonons in thermoelectrics. , 2021, , 23-42.		0
34	Ultra-high-performance heat spreader based on a graphite architecture with three-dimensional thermal routing. Cell Reports Physical Science, 2021, 2, 100621.	5.6	3
35	Designing thermal functional materials by coupling thermal transport calculations and machine learning. Journal of Applied Physics, 2020, 128, .	2.5	17
36	Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning. ACS Combinatorial Science, 2020, 22, 782-790.	3.8	8

#	Article	IF	CITATIONS
37	Quasiballistic phonon transport from first principles. Physical Review B, 2020, 102, .	3.2	6
38	Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure. Science Advances, 2020, 6, .	10.3	15
39	Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers. ACS Nano, 2020, 14, 6980-6989.	14.6	12
40	Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction. Physical Review X, 2020, 10, .	8.9	61
41	Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles. Physical Review B, 2020, 102, .	3.2	14
42	Elastic inhomogeneity and anomalous thermal transport in ultrafine Si phononic crystals. Nano Energy, 2020, 71, 104581.	16.0	17
43	Contact-line behavior in boiling on a heterogeneous surface: Physical insights from diffuse-interface modeling. Physical Review Fluids, 2020, 5, .	2.5	6
44	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, . Machine learning analysis of tunnel magnetoresistance of magnetic tunnel junctions with disordered	3.6	73
45	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MgA</mml:mi><mml:msub><mml: mathvariant="normal">I<mml:mn>2</mml:mn></mml:></mml:msub><mml:msub><mml:mi mathvariant="normal">Q</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>.</pre>	mj 3.6	9
46	Physical Review Research, 2020, 2, . Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 2020, 45, 343.	3.3	15
47	High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 33428-33434.	8.0	82
48	Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Computational Materials, 2019, 5, .	8.7	234
49	Hybrid Thermal Transport Characteristics of Doped Organic Semiconductor Poly(3,4-ethylenedioxythiophene):Tosylate. Journal of Physical Chemistry C, 2019, 123, 26735-26741.	3.1	35
50	Scalable Multi-nanostructured Silicon for Room-Temperature Thermoelectrics. ACS Applied Energy Materials, 2019, 2, 7083-7091.	5.1	17
51	Enhancing Thermal Boundary Conductance of Graphite–Metal Interface by Triazine-Based Molecular Bonding. ACS Applied Materials & Interfaces, 2019, 11, 37295-37301.	8.0	13
52	Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Central Science, 2019, 5, 1717-1730.	11.3	223
53	Unexpectedly high cross-plane thermoelectric performance of layered carbon nitrides. Journal of Materials Chemistry A, 2019, 7, 2114-2121.	10.3	44
54	Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction. Materials Today Physics, 2019, 8, 56-61.	6.0	55

#	Article	IF	CITATIONS
55	Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 2019, 5, 319-326.	11.3	121
56	Revealing How Topography of Surface Microstructures Alters Capillary Spreading. Scientific Reports, 2019, 9, 7787.	3.3	14
57	Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale, 2019, 11, 11839-11846.	5.6	66
58	Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films, 2019, 685, 180-185.	1.8	38
59	Monte Carlo tree search for materials design and discovery. MRS Communications, 2019, 9, 532-536.	1.8	34
60	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e1807849.	21.0	111
61	Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12987-12992.	10.3	57
62	Parametric Model to Analyze the Components of the Thermal Conductivity of a Cellulose-Nanofibril Aerogel. Physical Review Applied, 2019, 11, .	3.8	29
63	Materials Informatics for Heat Transfer: Recent Progresses and Perspectives. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 157-172.	2.6	41
64	High-Working-Pressure Sputtering of ZnO for Stable and Efficient Perovskite Solar Cells. ACS Applied Electronic Materials, 2019, 1, 389-396.	4.3	16
65	One-directional thermal transport in densely aligned single-wall carbon nanotube films. Applied Physics Letters, 2019, 115, .	3.3	23
66	Spectral Control of Thermal Boundary Conductance between Copper and Carbon Crystals by Self-Assembled Monolayers. ACS Applied Electronic Materials, 2019, 1, 2594-2601.	4.3	25
67	Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets. Applied Physics Letters, 2019, 115, .	3.3	44
68	Towards ultimate impedance of phonon transport by nanostructure interface. APL Materials, 2019, 7, 013102.	5.1	27
69	Tuning phonon transport spectrum for better thermoelectric materials. Science and Technology of Advanced Materials, 2019, 20, 10-25.	6.1	36
70	Superlubrication by phonon confinement. Physical Review B, 2018, 97, .	3.2	17
71	Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure. Physical Review Letters, 2018, 120, 045901.	7.8	45
72	Dynamic Wetting of Nanodroplets on Smooth and Patterned Graphene-Coated Surface. Journal of Physical Chemistry C, 2018, 122, 8423-8429.	3.1	18

#	Article	IF	CITATIONS
73	Thermal conductivity reduction in silicon fishbone nanowires. Scientific Reports, 2018, 8, 4452.	3.3	59
74	Modulating temperature dependence of thermal conductivity by nanostructuring. Japanese Journal of Applied Physics, 2018, 57, 120312.	1.5	2
75	Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model. Nano Letters, 2018, 18, 7469-7477.	9.1	53
76	Molecular dynamics study on heat conduction in poly(3,4-ethylenedioxythiophene). Japanese Journal of Applied Physics, 2018, 57, 101601.	1.5	8
77	Modeling Heat Conduction in Nanoporous Silicon with Geometry Distributions. Physical Review Applied, 2018, 10, .	3.8	13
78	Fabrication of uniform vertically-aligned carbon nanotube–polymer composite thin films by capillary flow intrusion. Japanese Journal of Applied Physics, 2018, 57, 115101.	1.5	3
79	Akhiezer mechanism limits coherent heat conduction in phononic crystals. Physical Review B, 2018, 98,	3.2	14
80	Revisiting PbTe to identify how thermal conductivity is really limited. Physical Review B, 2018, 97, .	3.2	28
81	Thermal phonon engineering by tailored nanostructures. Japanese Journal of Applied Physics, 2018, 57, 080101.	1.5	105
82	Impact of metastable phases on electrical properties of Si with different doping concentrations after processing by high-pressure torsion. Scripta Materialia, 2018, 157, 120-123.	5.2	12
83	Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy. Physical Review Letters, 2018, 120, 235901.	7.8	23
84	Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Science Advances, 2018, 4, eaar4192.	10.3	105
85	Effect of dissolved gas on bubble growth on a biphilic surface: A diffuse-interface simulation approach. International Journal of Heat and Mass Transfer, 2018, 126, 816-829.	4.8	4
86	Ultra-Narrowband Wavelength-Selective Thermal Emitter Designed by Bayesian Optimization. The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0135.	0.0	0
87	Electrostatic cloaking of surface structure for dynamic wetting. Science Advances, 2017, 3, e1602202.	10.3	12
88	Thermal rectification in restructured graphene with locally modulated temperature dependence of thermal conductivity. Physical Review B, 2017, 96, .	3.2	19
89	Designing Nanostructures for Phonon Transport via Bayesian Optimization. Physical Review X, 2017, 7, .	8.9	127
90	MDTS: automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 2017, 18, 498-503.	6.1	52

#	Article	IF	CITATIONS
91	Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nature Materials, 2017, 16, 892-897.	27.5	99
92	Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces. Scientific Reports, 2017, 7, 2036.	3.3	34
93	Effects of defects on thermoelectric properties of carbon nanotubes. Physical Review B, 2017, 95, .	3.2	61
94	Understanding decoupling mechanisms of liquid-mixture transport properties through regression analysis with structural perturbation. International Journal of Heat and Mass Transfer, 2017, 105, 12-17.	4.8	1
95	Phonon-interference resonance effects by nanoparticles embedded in a matrix. Physical Review B, 2017, 96, .	3.2	24
96	Probing length-scale separation of thermal and spin currents by nanostructuring YIG. Physical Review Materials, 2017, 1, .	2.4	18
97	Heat conduction in nanostructured materials. Journal of Thermal Science and Technology, 2016, 11, JTST0001-JTST0001.	1.1	35
98	Effects of phonon interference through long range interatomic bonds on thermal interface conductance. Low Temperature Physics, 2016, 42, 711-716.	0.6	10
99	Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics. APL Materials, 2016, 4, 104504.	5.1	24
100	Harmonic phonon theory for calculating thermal conductivity spectrum from first-principles dispersion relations. Applied Physics Letters, 2016, 108, .	3.3	8
101	Long-range interatomic forces can minimize heat transfer: From slowdown of longitudinal optical phonons to thermal conductivity minimum. Physical Review B, 2016, 94, .	3.2	5
102	Mechanism of Temperature Dependent Thermal Transport across the Interface between Self-Assembled Monolayer and Water. Journal of Physical Chemistry C, 2016, 120, 26678-26685.	3.1	40
103	Nano-cross-junction effect on phonon transport in silicon nanowire cages. Physical Review B, 2016, 94, .	3.2	112
104	Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures. Physical Review B, 2015, 91, .	3.2	63
105	Enhancement of anomalous Nernst effects in metallic multilayers free from proximity-induced magnetism. Physical Review B, 2015, 92, .	3.2	94
106	Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers. Physical Review B, 2015, 92, .	3.2	73
107	Thermally induced nonlinear vibration of single-walled carbon nanotubes. Physical Review B, 2015, 92,	3.2	12
108	Surface structure determines dynamic wetting. Scientific Reports, 2015, 5, 8474.	3.3	54

#	Article	IF	CITATIONS
109	Alloy composition of half-Heusler compounds for high thermoelectric performance. Transactions of the JSME (in Japanese), 2015, 81, 14-00652-14-00652.	0.2	0
110	Thermal Conductance Analysis of Sintered Nanostructures from the Viewpoint of Phonon Transport. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2015, 62, 169-174.	0.2	0
111	Nanoscale thermal conductivity spectroscopy by using gold nano-islands heat absorbers. Applied Physics Letters, 2015, 106, .	3.3	17
112	Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties. CIRP Annals - Manufacturing Technology, 2015, 64, 257-260.	3.6	20
113	Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy, 2015, 12, 845-851.	16.0	150
114	Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations. Journal of Computational and Theoretical Nanoscience, 2015, 12, 168-174.	0.4	78
115	When and how surface structure determines the dynamics of partial wetting. Europhysics Letters, 2015, 110, 46002.	2.0	10
116	Crystalline–Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics. ACS Applied Materials & Interfaces, 2015, 7, 13484-13489.	8.0	62
117	Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 2015, 13, 601-608.	16.0	24
118	Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation. Applied Physics Letters, 2015, 106, .	3.3	21
119	Effective phonon mean free path in polycrystalline nanostructures. Applied Physics Letters, 2015, 106, .	3.3	79
120	Thermal conductivity of bulk nanostructured lead telluride. Applied Physics Letters, 2014, 104, 021915.	3.3	24
121	Probing and tuning inelastic phonon conductance across finite-thickness interface. Applied Physics Express, 2014, 7, 121801.	2.4	49
122	Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths. Applied Physics Letters, 2014, 105, .	3.3	28
123	NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS. Annual Review of Heat Transfer, 2014, 17, 177-203.	1.0	43
124	22pm1-E2 Numerical simulation of effective phonon mean free path in polycrystalline nanostructures. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2014, 2014.6, _22pm1-E222pm1-E2	0.0	0
125	Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions. Journal of Physical Chemistry C, 2013, 117, 15409-15413.	3.1	74
126	Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. International Journal of Heat and Mass Transfer, 2013, 67, 1024-1029.	4.8	72

#	Article	IF	CITATIONS
127	Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. Europhysics Letters, 2013, 101, 16001.	2.0	100
128	Tunable Electrical and Thermal Transport in Ice-Templated Multilayer Graphene Nanocomposites through Freezing Rate Control. ACS Nano, 2013, 7, 11183-11189.	14.6	65
129	Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75â^'Ti Zr0.25NiSn0.99Sb0.01. Nano Energy, 2013, 2, 82-87.	16.0	95
130	Dynamic wetting at the nanoscale. Physical Review E, 2013, 88, 033010.	2.1	33
131	Phonon transport analysis of silicon germanium alloys using molecular dynamics simulations. Journal of Applied Physics, 2013, 113, .	2.5	28
132	Gas–Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2013, 117, 14254-14260.	3.1	5
133	Importance of local force fields on lattice thermal conductivity reduction in PbTe 1â^'x Se x alloys. Europhysics Letters, 2013, 102, 46002.	2.0	39
134	Molecular Dynamics of Highly Efficient Flow at the Nanoscale. Journal of the Visualization Society of Japan, 2013, 33, 14-18.	0.0	0
135	7PM1-C-4 Influence of interface structure on phonon transport in bulk nanostructured thermoelectric materials. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2013, 2013.5, 283-284.	0.0	0
136	Graphene-diamond hybrid structure as spin-polarized conducting wire with thermally efficient heat sinks. Applied Physics Letters, 2012, 100, .	3.3	18
137	Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion. Materials Express, 2012, 2, 213-223.	0.5	59
138	Microscopic mechanism of low thermal conductivity in lead telluride. Physical Review B, 2012, 85, .	3.2	115
139	Simulation Study on the Adsorption Properties of Linear Alkanes on Closed Nanotube Bundles. Journal of Physical Chemistry B, 2012, 116, 9812-9819.	2.6	15
140	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	14.6	52
141	Influence of Ion Size and Charge on Osmosis. Journal of Physical Chemistry B, 2012, 116, 4206-4211.	2.6	25
142	Diameter Controlled Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 370-376.	0.9	19
143	Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. Journal of Applied Physics, 2012, 111, .	2.5	37
144	Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1â^*xTixCoSb0.8Sn0.2. Energy and Environmental Science, 2012, 5, 7543.	30.8	244

#	Article	IF	CITATIONS
145	Growth of Horizontally Aligned Single-Walled Carbon Nanotubes on the Singular R-Plane (10–11) of Quartz. Journal of Physical Chemistry C, 2012, 116, 6805-6808.	3.1	12
146	Generalized model of thermal boundary conductance between SWNT and surrounding supercritical Lennard-Jones fluid – derivation from molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2012, 55, 2008-2013.	4.8	5
147	Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. International Journal of Heat and Mass Transfer, 2012, 55, 3885-3890.	4.8	122
148	P-OS5-3 Lattice thermal conductivity calculations of nanostructured thermoelectric materials using Monte Carlo method. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2012, 2012.4, 285-286.	0.0	0
149	Facile fabrication of all-SWNT field-effect transistors. Nano Research, 2011, 4, 580-588.	10.4	13
150	Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation. Nano Research, 2011, 4, 623-634.	10.4	25
151	Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. Carbon, 2011, 49, 1446-1452.	10.3	33
152	Thermal conductivity of half-Heusler compounds from first-principles calculations. Physical Review B, 2011, 84, .	3.2	187
153	Isotope-induced elastic scattering of optical phonons in individual suspended single-walled carbon nanotubes. Applied Physics Letters, 2011, 99, 093104.	3.3	4
154	Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. Physical Review B, 2011, 84, .	3.2	67
155	Energy accommodation of gas molecules with free-standing films of vertically aligned single-walled carbon nanotubes. , 2011, , .		0
156	MP-3 Phonon transport analysis of silicon crystal by molecular dynamics method. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2011, 2011.3, 73-74.	0.0	0
157	Thermal Boundary Conduction between a Single-Walled Carbon Nanotube and Surrounding Material(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 642-649.	0.2	1
158	Scattering Process of Transmitted Gas Molecules Through Vertically Aligned Single-Walled Carbon Nanotube Arrays(<special issue="">The 1st Symposium on Micro-Nano Engineering). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76, 1933-1935.</special>	0.2	0
159	Magneto-Absorption Spectra from Selected Chirality ofÂSingle-Walled Carbon Nanotubes. Journal of Low Temperature Physics, 2010, 159, 267-271.	1.4	1
160	Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons. International Journal of Thermophysics, 2010, 31, 1945-1951.	2.1	28
161	Evaluation of adsorption capacity of single-walled carbon nanotubes for application to micro gas preconcentrators. , 2010, , .		1
162	Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3901-3906.	0.9	14

#	Article	IF	CITATIONS
163	Ion Desorption from Single-Walled Carbon Nanotubes Induced by Soft X-ray Illumination. Japanese Journal of Applied Physics, 2010, 49, 105104.	1.5	3
164	Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films. Nano Letters, 2010, 10, 2395-2400.	9.1	66
165	Growth Mechanism of Single-Walled Carbon Nanotube from Catalytic Reaction Inside Carbon Nanotube Template. ACS Nano, 2010, 4, 4769-4775.	14.6	7
166	Micro Gas Preconcentrator Made of a Film of Single-Walled Carbon Nanotubes. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 207-211.	0.1	14
167	MNM-4A-2 Diameter controlled CVD synthesis of single-walled carbon nanotubes. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2010, 2010.2, 173-174.	0.0	0
168	Dielectric relaxation of water inside a single-walled carbon nanotube. Physical Review B, 2009, 80, .	3.2	21
169	Carbon Nanotube Stationary Phase in a Microfabricated Column for High-Performance Gas Chromatography. , 2009, , .		8
170	Numerical calculation of the dielectrophoretic force on a slender body. Electrophoresis, 2009, 30, 831-838.	2.4	5
171	Mechanism and Optimization of Metal Deposition onto Vertically Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2009, 113, 14230-14235.	3.1	9
172	Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology, 2009, 20, 055708.	2.6	76
173	High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 10344-10345.	13.7	30
174	Molecular Dynamics Simulation of a Single-Walled Carbon Nanotube Nucleation from a Catalytic Metal Cluster under Confinement(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 2060-2067.	0.2	0
175	M1-5 Optimization of catalyst deposition by spin-coating for synthesis of vertically-aligned single-walled carbon nanotube arrays (M1 Fabrication Technology and NEMS/MEMS Material). The Proceedings of the Symposium on Micro-Nano Science and Technology, 2009, 2009.1, 23-24.	0.0	0
176	Report on 6th U.S.–Japan Joint Seminar on Nanoscale Transport Phenomena—Science and Engineering. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 273-293.	2.6	1
177	Vertically Aligned13C Single-Walled Carbon Nanotubes Synthesized by No-Flow Alcohol Chemical Vapor Deposition and their Root Growth Mechanism. Japanese Journal of Applied Physics, 2008, 47, 1971-1974.	1.5	24
178	Scattering of Monatomic Gas Molecules on Vertically Aligned Single-Walled Carbon Nanotubes. , 2008, , .		1
179	Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Physical Review B, 2008, 78, .	3.2	119
180	Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2008, 47, 2005.	1.5	116

11

#	Article	IF	CITATIONS
181	Molecular Dynamics Simulations of Diffusive-Ballistic Heat Conduction in Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1022, 1.	0.1	1
182	Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes. Physical Review B, 2007, 76, .	3.2	10
183	Molecular Dynamics of Ice-Nanotube Formation Inside Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 12188-12193.	3.1	55
184	Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Physical Review B, 2006, 73, .	3.2	224
185	Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes. Journal of Thermal Science and Technology, 2006, 1, 138-148.	1.1	94
186	Control of oscillatory thermocapillary convection with local heating. Journal of Crystal Growth, 2006, 286, 502-511.	1.5	2
187	Experiment on multimode feedback control of non-linear thermocapillary convection in a half-zone liquid bridge. Advances in Space Research, 2005, 36, 57-63.	2.6	0
188	Feedback control of oscillatory thermocapillary convection in a half-zone liquid bridge. Journal of Fluid Mechanics, 2003, 496, 193-211.	3.4	25
189	Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction. , 0, , .		1