Junichiro Shiomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4096587/publications.pdf

Version: 2024-02-01

44069 76900 6,692 189 48 74 citations h-index g-index papers 191 191 191 6610 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1a^xTixCoSb0.8Sn0.2. Energy and Environmental Science, 2012, 5, 7543.	30.8	244
2	Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Computational Materials, 2019, 5, .	8.7	234
3	Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Physical Review B, 2006, 73, .	3.2	224
4	Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Central Science, 2019, 5, 1717-1730.	11.3	223
5	Thermal conductivity of half-Heusler compounds from first-principles calculations. Physical Review B, 2011, 84, .	3.2	187
6	Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy, 2015, 12, 845-851.	16.0	150
7	Designing Nanostructures for Phonon Transport via Bayesian Optimization. Physical Review X, 2017, 7, .	8.9	127
8	Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. International Journal of Heat and Mass Transfer, 2012, 55, 3885-3890.	4.8	122
9	Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 2019, 5, 319-326.	11.3	121
10	Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Physical Review B, 2008, 78, .	3.2	119
11	Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2008, 47, 2005.	1.5	116
12	Microscopic mechanism of low thermal conductivity in lead telluride. Physical Review B, 2012, 85, .	3.2	115
13	Nano-cross-junction effect on phonon transport in silicon nanowire cages. Physical Review B, 2016, 94, .	3.2	112
14	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e1807849.	21.0	111
15	Thermal phonon engineering by tailored nanostructures. Japanese Journal of Applied Physics, 2018, 57, 080101.	1.5	105
16	Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Science Advances, 2018, 4, eaar4192.	10.3	105
17	Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. Europhysics Letters, 2013, 101, 16001.	2.0	100
18	Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nature Materials, 2017, 16, 892-897.	27.5	99

#	Article	IF	Citations
19	Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75â^'Ti Zr0.25NiSn0.99Sb0.01. Nano Energy, 2013, 2, 82-87.	16.0	95
20	Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes. Journal of Thermal Science and Technology, 2006, 1, 138-148.	1.1	94
21	Enhancement of anomalous Nernst effects in metallic multilayers free from proximity-induced magnetism. Physical Review B, 2015, 92, .	3.2	94
22	High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33428-33434.	8.0	82
23	Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science, 2022, 376, 738-743.	12.6	82
24	Effective phonon mean free path in polycrystalline nanostructures. Applied Physics Letters, 2015, 106, .	3.3	79
25	Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations. Journal of Computational and Theoretical Nanoscience, 2015, 12, 168-174.	0.4	78
26	Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology, 2009, 20, 055708.	2.6	76
27	Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions. Journal of Physical Chemistry C, 2013, 117, 15409-15413.	3.1	74
28	Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers. Physical Review B, 2015, 92, .	3.2	73
29	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, .	3.6	73
30	Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. International Journal of Heat and Mass Transfer, 2013, 67, 1024-1029.	4.8	72
31	Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. Physical Review B, 2011, 84, .	3.2	67
32	Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films. Nano Letters, 2010, 10, 2395-2400.	9.1	66
33	Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale, 2019, 11, 11839-11846.	5.6	66
34	Tunable Electrical and Thermal Transport in Ice-Templated Multilayer Graphene Nanocomposites through Freezing Rate Control. ACS Nano, 2013, 7, 11183-11189.	14.6	65
35	Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures. Physical Review B, 2015, 91, .	3.2	63
36	Crystalline–Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13484-13489.	8.0	62

#	Article	IF	Citations
37	Effects of defects on thermoelectric properties of carbon nanotubes. Physical Review B, 2017, 95, .	3.2	61
38	Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction. Physical Review $X,2020,10,.$	8.9	61
39	Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion. Materials Express, 2012, 2, 213-223.	0.5	59
40	Thermal conductivity reduction in silicon fishbone nanowires. Scientific Reports, 2018, 8, 4452.	3.3	59
41	Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction. ACS Nano, 2021, 15, 1436-1444.	14.6	59
42	Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12987-12992.	10.3	57
43	Molecular Dynamics of Ice-Nanotube Formation Inside Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 12188-12193.	3.1	55
44	Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction. Materials Today Physics, 2019, 8, 56-61.	6.0	55
45	Surface structure determines dynamic wetting. Scientific Reports, 2015, 5, 8474.	3.3	54
46	Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model. Nano Letters, 2018, 18, 7469-7477.	9.1	53
47	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	14.6	52
48	MDTS: automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 2017, 18, 498-503.	6.1	52
49	Probing and tuning inelastic phonon conductance across finite-thickness interface. Applied Physics Express, 2014, 7, 121801.	2.4	49
50	Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure. Physical Review Letters, 2018, 120, 045901.	7.8	45
51	Unexpectedly high cross-plane thermoelectric performance of layered carbon nitrides. Journal of Materials Chemistry A, 2019, 7, 2114-2121.	10.3	44
52	Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets. Applied Physics Letters, 2019, 115, .	3.3	44
53	NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS. Annual Review of Heat Transfer, 2014, 17, 177-203.	1.0	43
54	Materials Informatics for Heat Transfer: Recent Progresses and Perspectives. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 157-172.	2.6	41

#	Article	IF	Citations
55	Mechanism of Temperature Dependent Thermal Transport across the Interface between Self-Assembled Monolayer and Water. Journal of Physical Chemistry C, 2016, 120, 26678-26685.	3.1	40
56	Importance of local force fields on lattice thermal conductivity reduction in PbTe $1\hat{a}$ 'x Se x alloys. Europhysics Letters, 2013, 102, 46002.	2.0	39
57	Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films, 2019, 685, 180-185.	1.8	38
58	Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. Journal of Applied Physics, 2012, 111, .	2.5	37
59	Tuning phonon transport spectrum for better thermoelectric materials. Science and Technology of Advanced Materials, 2019, 20, 10-25.	6.1	36
60	Heat conduction in nanostructured materials. Journal of Thermal Science and Technology, 2016, 11, JTST0001-JTST0001.	1.1	35
61	Hybrid Thermal Transport Characteristics of Doped Organic Semiconductor Poly(3,4-ethylenedioxythiophene):Tosylate. Journal of Physical Chemistry C, 2019, 123, 26735-26741.	3.1	35
62	Weaker bonding can give larger thermal conductance at highly mismatched interfaces. Science Advances, 2021, 7 , .	10.3	35
63	Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces. Scientific Reports, 2017, 7, 2036.	3.3	34
64	Monte Carlo tree search for materials design and discovery. MRS Communications, 2019, 9, 532-536.	1.8	34
65	Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. Carbon, 2011, 49, 1446-1452.	10.3	33
66	Dynamic wetting at the nanoscale. Physical Review E, 2013, 88, 033010.	2.1	33
67	High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 10344-10345.	13.7	30
68	Parametric Model to Analyze the Components of the Thermal Conductivity of a Cellulose-Nanofibril Aerogel. Physical Review Applied, 2019, 11, .	3.8	29
69	Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons. International Journal of Thermophysics, 2010, 31, 1945-1951.	2.1	28
70	Phonon transport analysis of silicon germanium alloys using molecular dynamics simulations. Journal of Applied Physics, 2013, 113, .	2.5	28
71	Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths. Applied Physics Letters, 2014, 105, .	3.3	28
72	Revisiting PbTe to identify how thermal conductivity is really limited. Physical Review B, 2018, 97, .	3.2	28

#	Article	IF	CITATIONS
73	Towards ultimate impedance of phonon transport by nanostructure interface. APL Materials, 2019, 7, 013102.	5.1	27
74	Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning. Physical Review Materials, 2021, 5, .	2.4	27
75	Feedback control of oscillatory thermocapillary convection in a half-zone liquid bridge. Journal of Fluid Mechanics, 2003, 496, 193-211.	3.4	25
76	Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation. Nano Research, 2011, 4, 623-634.	10.4	25
77	Influence of Ion Size and Charge on Osmosis. Journal of Physical Chemistry B, 2012, 116, 4206-4211.	2.6	25
78	Spectral Control of Thermal Boundary Conductance between Copper and Carbon Crystals by Self-Assembled Monolayers. ACS Applied Electronic Materials, 2019, 1, 2594-2601.	4.3	25
79	Vertically Aligned13C Single-Walled Carbon Nanotubes Synthesized by No-Flow Alcohol Chemical Vapor Deposition and their Root Growth Mechanism. Japanese Journal of Applied Physics, 2008, 47, 1971-1974.	1.5	24
80	Thermal conductivity of bulk nanostructured lead telluride. Applied Physics Letters, 2014, 104, 021915.	3.3	24
81	Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 2015, 13, 601-608.	16.0	24
82	Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics. APL Materials, 2016, 4, 104504.	5.1	24
83	Phonon-interference resonance effects by nanoparticles embedded in a matrix. Physical Review B, 2017, 96, .	3.2	24
84	Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy. Physical Review Letters, 2018, 120, 235901.	7.8	23
85	One-directional thermal transport in densely aligned single-wall carbon nanotube films. Applied Physics Letters, 2019, 115, .	3.3	23
86	Dielectric relaxation of water inside a single-walled carbon nanotube. Physical Review B, 2009, 80, .	3.2	21
87	Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation. Applied Physics Letters, 2015, 106, .	3.3	21
88	Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties. CIRP Annals - Manufacturing Technology, 2015, 64, 257-260.	3.6	20
89	Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams. Matter, 2021, 4, 276-289.	10.0	20
90	Diameter Controlled Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 370-376.	0.9	19

#	Article	IF	Citations
91	Thermal rectification in restructured graphene with locally modulated temperature dependence of thermal conductivity. Physical Review B, 2017, 96, .	3.2	19
92	Ultimate impedance of coherent heat conduction in van der Waals graphene-MoS2 heterostructures. Materials Today Physics, 2021, 16, 100324.	6.0	19
93	Graphene-diamond hybrid structure as spin-polarized conducting wire with thermally efficient heat sinks. Applied Physics Letters, 2012, 100, .	3.3	18
94	Dynamic Wetting of Nanodroplets on Smooth and Patterned Graphene-Coated Surface. Journal of Physical Chemistry C, 2018, 122, 8423-8429.	3.1	18
95	Above-room-temperature giant thermal conductivity switching in spintronic multilayers. Applied Physics Letters, 2021, 118, .	3.3	18
96	Probing length-scale separation of thermal and spin currents by nanostructuring YIG. Physical Review Materials, 2017, 1 , .	2.4	18
97	Nanoscale thermal conductivity spectroscopy by using gold nano-islands heat absorbers. Applied Physics Letters, 2015, 106, .	3.3	17
98	Superlubrication by phonon confinement. Physical Review B, 2018, 97, .	3.2	17
99	Scalable Multi-nanostructured Silicon for Room-Temperature Thermoelectrics. ACS Applied Energy Materials, 2019, 2, 7083-7091.	5.1	17
100	Designing thermal functional materials by coupling thermal transport calculations and machine learning. Journal of Applied Physics, 2020, 128, .	2.5	17
101	Elastic inhomogeneity and anomalous thermal transport in ultrafine Si phononic crystals. Nano Energy, 2020, 71, 104581.	16.0	17
102	Scalable monolayer-functionalized nanointerface for thermal conductivity enhancement in copper/diamond composite. Carbon, 2021, 175, 299-306.	10.3	17
103	High-Working-Pressure Sputtering of ZnO for Stable and Efficient Perovskite Solar Cells. ACS Applied Electronic Materials, 2019, 1, 389-396.	4.3	16
104	Electronic transport descriptors for the rapid screening of thermoelectric materials. Materials Horizons, 2021, 8, 2463-2474.	12.2	16
105	Simulation Study on the Adsorption Properties of Linear Alkanes on Closed Nanotube Bundles. Journal of Physical Chemistry B, 2012, 116, 9812-9819.	2.6	15
106	Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure. Science Advances, 2020, 6, .	10.3	15
107	Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 2020, 45, 343.	3.3	15
108	Parametric Study of Alcohol Catalytic Chemical Vapor Deposition for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3901-3906.	0.9	14

#	Article	IF	Citations
109	Akhiezer mechanism limits coherent heat conduction in phononic crystals. Physical Review B, 2018, 98,	3.2	14
110	Revealing How Topography of Surface Microstructures Alters Capillary Spreading. Scientific Reports, 2019, 9, 7787.	3.3	14
111	Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles. Physical Review B, 2020, 102, .	3.2	14
112	Tailoring the surface morphology of carbon nanotube forests by plasma etching: A parametric study. Carbon, 2021, 180, 204-214.	10.3	14
113	Micro Gas Preconcentrator Made of a Film of Single-Walled Carbon Nanotubes. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 207-211.	0.1	14
114	Photonic design for color compatible radiative cooling accelerated by materials informatics. International Journal of Heat and Mass Transfer, 2022, 195, 123193.	4.8	14
115	Facile fabrication of all-SWNT field-effect transistors. Nano Research, 2011, 4, 580-588.	10.4	13
116	Modeling Heat Conduction in Nanoporous Silicon with Geometry Distributions. Physical Review Applied, 2018, 10 , .	3.8	13
117	Enhancing Thermal Boundary Conductance of Graphite–Metal Interface by Triazine-Based Molecular Bonding. ACS Applied Materials & Interfaces, 2019, 11, 37295-37301.	8.0	13
118	Phase-transition-induced giant Thomson effect for thermoelectric cooling. Applied Physics Reviews, 2022, 9, .	11.3	13
119	Growth of Horizontally Aligned Single-Walled Carbon Nanotubes on the Singular R-Plane (10–11) of Quartz. Journal of Physical Chemistry C, 2012, 116, 6805-6808.	3.1	12
120	Thermally induced nonlinear vibration of single-walled carbon nanotubes. Physical Review B, 2015, 92,	3.2	12
121	Electrostatic cloaking of surface structure for dynamic wetting. Science Advances, 2017, 3, e1602202.	10.3	12
122	Impact of metastable phases on electrical properties of Si with different doping concentrations after processing by high-pressure torsion. Scripta Materialia, 2018, 157, 120-123.	5.2	12
123	Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers. ACS Nano, 2020, 14, 6980-6989.	14.6	12
124	Modulation of Interfacial Thermal Transport between Fumed Silica Nanoparticles by Surface Chemical Functionalization for Advanced Thermal Insulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17404-17411.	8.0	12
125	A novel strategy for GaN-on-diamond device with a high thermal boundary conductance. Journal of Alloys and Compounds, 2022, 905, 164076.	5 . 5	11
126	Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes. Physical Review B, 2007, 76, .	3.2	10

#	Article	IF	Citations
127	When and how surface structure determines the dynamics of partial wetting. Europhysics Letters, 2015, 110, 46002.	2.0	10
128	Effects of phonon interference through long range interatomic bonds on thermal interface conductance. Low Temperature Physics, 2016, 42, 711-716.	0.6	10
129	Mechanism and Optimization of Metal Deposition onto Vertically Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2009, 113, 14230-14235. Machine learning analysis of tunnel magnetoresistance of magnetic tunnel junctions with disordered	3.1	9
130	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MgA</mml:mi><mml:msub><mml: mathvariant="normal">l<mml:mn>2</mml:mn></mml:></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>...<td>mi 3.6</td><td>9</td></pre>	mi 3.6	9
131	Physical Review Research, 2020.2 Annarmonic phonon renormalization and thermal transport in the type-I <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mi .<="" 106,="" 2022,="" b,="" clathrate="" first="" from="" physical="" principles.="" review="" td=""><td>n ଃ&≭/mm</td><td>l:ran></td></mml:mi></mml:msub></mml:mrow></mml:math>	n ଃ& ≭/mm	l:ran>
132	Carbon Nanotube Stationary Phase in a Microfabricated Column for High-Performance Gas Chromatography. , 2009, , .		8
133	Harmonic phonon theory for calculating thermal conductivity spectrum from first-principles dispersion relations. Applied Physics Letters, 2016, 108, .	3.3	8
134	Molecular dynamics study on heat conduction in poly(3,4-ethylenedioxythiophene). Japanese Journal of Applied Physics, 2018, 57, 101601.	1.5	8
135	Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning. ACS Combinatorial Science, 2020, 22, 782-790.	3.8	8
136	Phonon transport in multiphase nanostructured silicon fabricated by high-pressure torsion. Journal of Applied Physics, 2021, 129, .	2.5	8
137	Nanoconfinement between Graphene Walls Suppresses the Near-Wall Diffusion of the Ionic Liquid [BMIM][PF6]. Journal of Physical Chemistry B, 2021, 125, 4527-4535.	2.6	8
138	Growth Mechanism of Single-Walled Carbon Nanotube from Catalytic Reaction Inside Carbon Nanotube Template. ACS Nano, 2010, 4, 4769-4775.	14.6	7
139	Quasiballistic phonon transport from first principles. Physical Review B, 2020, 102, .	3.2	6
140	Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ï‰ method. Review of Scientific Instruments, 2021, 92, 034902.	1.3	6
141	Heat conduction below diffusive limit in amorphous superlattice structures. Nano Energy, 2021, 84, 105903.	16.0	6
142	Thermal properties of single-walled carbon nanotube forests with various volume fractions. International Journal of Heat and Mass Transfer, 2021, 171, 121076.	4.8	6
143	Akhiezer mechanism dominates relaxation of propagons in amorphous material at room temperature. Journal of Applied Physics, 2021, 130, .	2.5	6
144	Contact-line behavior in boiling on a heterogeneous surface: Physical insights from diffuse-interface modeling. Physical Review Fluids, 2020, 5, .	2.5	6

#	Article	IF	Citations
145	Revisiting thermal conductivity and interface conductance at the nanoscale. International Journal of Heat and Mass Transfer, 2022, 183, 122056.	4.8	6
146	Metal–organic framework coated porous structures for enhanced thermoelectric performance. Energy Conversion and Management, 2022, 255, 115289.	9.2	6
147	P-TRANS: A Monte Carlo ray-tracing software to simulate phonon transport in arbitrary nanostructures. Computer Physics Communications, 2022, 276, 108361.	7.5	6
148	Numerical calculation of the dielectrophoretic force on a slender body. Electrophoresis, 2009, 30, 831-838.	2.4	5
149	Generalized model of thermal boundary conductance between SWNT and surrounding supercritical Lennard-Jones fluid – derivation from molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2012, 55, 2008-2013.	4.8	5
150	Gas–Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2013, 117, 14254-14260.	3.1	5
151	Long-range interatomic forces can minimize heat transfer: From slowdown of longitudinal optical phonons to thermal conductivity minimum. Physical Review B, 2016, 94, .	3.2	5
152	Isotope-induced elastic scattering of optical phonons in individual suspended single-walled carbon nanotubes. Applied Physics Letters, 2011, 99, 093104.	3.3	4
153	Effect of dissolved gas on bubble growth on a biphilic surface: A diffuse-interface simulation approach. International Journal of Heat and Mass Transfer, 2018, 126, 816-829.	4.8	4
154	Ion Desorption from Single-Walled Carbon Nanotubes Induced by Soft X-ray Illumination. Japanese Journal of Applied Physics, 2010, 49, 105104.	1.5	3
155	Fabrication of uniform vertically-aligned carbon nanotube–polymer composite thin films by capillary flow intrusion. Japanese Journal of Applied Physics, 2018, 57, 115101.	1.5	3
156	Strain-induced band modulation of thermal phonons in carbon nanotubes. Physical Review B, 2021, 104, .	3.2	3
157	Ultra-high-performance heat spreader based on a graphite architecture with three-dimensional thermal routing. Cell Reports Physical Science, 2021, 2, 100621.	5.6	3
158	Negligible contribution of inter-dot coherent modes to heat conduction in quantum-dot superlattice. Materials Today Physics, 2022, 22, 100601.	6.0	3
159	Control of oscillatory thermocapillary convection with local heating. Journal of Crystal Growth, 2006, 286, 502-511.	1.5	2
160	Modulating temperature dependence of thermal conductivity by nanostructuring. Japanese Journal of Applied Physics, 2018, 57, 120312.	1.5	2
161	Heat diffusion-related damping process in a highly precise coarse-grained model for nonlinear motion of SWCNT. Scientific Reports, 2021, 11, 563.	3.3	2
162	Optimized Tamm-plasmon structure by Differential Evolution algorithm for single and dual peaks hot-electron photodetection. Optical Materials, 2021, 113, 110857.	3.6	2

#	Article	IF	Citations
163	Synergistic phonon scattering in epitaxial silicon multilayers with germanium nanodot inclusions. Physical Review B, 2021, 104, .	3.2	2
164	Molecular Dynamics Simulations of Diffusive-Ballistic Heat Conduction in Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1022, 1.	0.1	1
165	Report on 6th U.S.–Japan Joint Seminar on Nanoscale Transport Phenomena—Science and Engineering. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 273-293.	2.6	1
166	Scattering of Monatomic Gas Molecules on Vertically Aligned Single-Walled Carbon Nanotubes. , 2008, , .		1
167	Thermal Boundary Conduction between a Single-Walled Carbon Nanotube and Surrounding Material(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 642-649.	0.2	1
168	Magneto-Absorption Spectra from Selected Chirality ofÂSingle-Walled Carbon Nanotubes. Journal of Low Temperature Physics, 2010, 159, 267-271.	1.4	1
169	Evaluation of adsorption capacity of single-walled carbon nanotubes for application to micro gas preconcentrators. , 2010, , .		1
170	Understanding decoupling mechanisms of liquid-mixture transport properties through regression analysis with structural perturbation. International Journal of Heat and Mass Transfer, 2017, 105, 12-17.	4.8	1
171	Reduction of interface thermal resistance between TIM and metal surface by tuning wettability. Transactions of the JSME (in Japanese), 2021, 87, 21-00023-21-00023.	0.2	1
172	Descriptors of intrinsic hydrodynamic thermal transport: screening a phonon database in a machine learning approach. Journal of Physics Condensed Matter, 2022, 34, 135702.	1.8	1
173	Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction. , 0, , .		1
174	Experiment on multimode feedback control of non-linear thermocapillary convection in a half-zone liquid bridge. Advances in Space Research, 2005, 36, 57-63.	2.6	0
175	Molecular Dynamics Simulation of a Single-Walled Carbon Nanotube Nucleation from a Catalytic Metal Cluster under Confinement(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 2060-2067.	0.2	0
176	Scattering Process of Transmitted Gas Molecules Through Vertically Aligned Single-Walled Carbon Nanotube Arrays(<special issue="">The 1st Symposium on Micro-Nano Engineering). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76, 1933-1935.</special>	0.2	0
177	Energy accommodation of gas molecules with free-standing films of vertically aligned single-walled carbon nanotubes., 2011,,.		0
178	Molecular Dynamics of Highly Efficient Flow at the Nanoscale. Journal of the Visualization Society of Japan, 2013, 33, 14-18.	0.0	0
179	Alloy composition of half-Heusler compounds for high thermoelectric performance. Transactions of the JSME (in Japanese), 2015, 81, 14-00652-14-00652.	0.2	0
180	Thermal Conductance Analysis of Sintered Nanostructures from the Viewpoint of Phonon Transport. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2015, 62, 169-174.	0.2	0

#	Article	IF	CITATIONS
181	Thermal Nanostructure Design by Materials Informatics. Springer Series in Materials Science, 2021, , 153-195.	0.6	0
182	Thermal transport by phonons in thermoelectrics. , 2021, , 23-42.		0
183	M1-5 Optimization of catalyst deposition by spin-coating for synthesis of vertically-aligned single-walled carbon nanotube arrays (M1 Fabrication Technology and NEMS/MEMS Material). The Proceedings of the Symposium on Micro-Nano Science and Technology, 2009, 2009.1, 23-24.	0.0	0
184	MNM-4A-2 Diameter controlled CVD synthesis of single-walled carbon nanotubes. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2010, 2010.2, 173-174.	0.0	0
185	MP-3 Phonon transport analysis of silicon crystal by molecular dynamics method. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2011, 2011.3, 73-74.	0.0	0
186	P-OS5-3 Lattice thermal conductivity calculations of nanostructured thermoelectric materials using Monte Carlo method. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2012, 2012.4, 285-286.	0.0	0
187	7PM1-C-4 Influence of interface structure on phonon transport in bulk nanostructured thermoelectric materials. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2013, 2013.5, 283-284.	0.0	0
188	22pm1-E2 Numerical simulation of effective phonon mean free path in polycrystalline nanostructures. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2014, 2014.6,22pm1-E222pm1-E2	0.0	0
189	Ultra-Narrowband Wavelength-Selective Thermal Emitter Designed by Bayesian Optimization. The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0135.	0.0	O