
Hao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094798/publications.pdf Version: 2024-02-01

HAONNANC

#	Article	IF	CITATIONS
1	Interfacial Engineered Vanadium Oxide Nanoheterostructures Synchronizing High-Energy and Long-Term Potassium-Ion Storage. ACS Nano, 2022, 16, 1502-1510.	14.6	35
2	Suppression of superconductivity dominated by proximity effect in amorphous MoSi nanobelts. Physical Review B, 2022, 105, .	3.2	6
3	A universal, green, and self-reliant electrolytic approach to high-entropy layered (oxy)hydroxide nanosheets for efficient electrocatalytic water oxidation. Journal of Colloid and Interface Science, 2022, 617, 500-510.	9.4	10
4	Lidar with superconducting nanowire single-photon detectors: Recent advances and developments. Optics and Lasers in Engineering, 2022, 156, 107102.	3.8	16
5	Hierarchically Constructed ZnO/Co ₃ O ₄ Nanoheterostructures Synergizing Dendrite Inhibition and Polysulfide Conversion in Lithium–Sulfur Battery. , 2022, 4, 1358-1367.		14
6	Optimizing Ion Pathway in Titanium Carbide MXene for Practical Highâ€Rate Supercapacitor. Advanced Energy Materials, 2021, 11, 2003025.	19.5	152
7	Allâ€MXene Cottonâ€Based Supercapacitorâ€Powered Human Body Thermal Management System. ChemElectroChem, 2021, 8, 648-655.	3.4	33
8	Interconnected Twoâ€dimensional Arrays of Niobium Nitride Nanocrystals as Stable Lithium Host. Batteries and Supercaps, 2021, 4, 106-111.	4.7	7
9	Saturation efficiency for detecting 1550  nm photons with a 2 × 2 array of Mo _{0.8} Si _{0.2} nanowires at 2.2  K. Photonics Research, 2021, 9, 389.	7.0	9
10	Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire. Science Bulletin, 2021, 66, 965-968.	9.0	23
11	Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharmaceutica Sinica B, 2021, 11, 1175-1199.	12.0	23
12	Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Research, 2021, 14, 3416-3422.	10.4	31
13	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	21.0	190
14	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	38.1	580
15	Heterostructure-Induced Light Absorption and Charge-Transfer Optimization of a TiO ₂ Photoanode for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 14440-14446.	5.1	12
16	Amorphous RuS ₂ electrocatalyst with optimized active sites for hydrogen evolution. Nanotechnology, 2020, 31, 145401.	2.6	16
17	Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts, 2020, 10, 1301.	3.5	21
18	Enhanced Rate Capability of Ionâ€Accessible Ti ₃ C ₂ T <i>_x</i> â€NbN Hybrid Electrodes. Advanced Energy Materials, 2020, 10, 2001411.	19.5	50

HAO WANG

#	Article	IF	CITATIONS
19	Ti ₃ C ₂ T <i>_x</i> MXene Sponge Composite as Broadband Terahertz Absorber. Advanced Optical Materials, 2020, 8, 2001120.	7.3	91
20	Coâ€Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small, 2020, 16, e2002426.	10.0	263
21	Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10604-10624.	10.3	201
22	Intercalation in Twoâ€Đimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy and Environmental Materials, 2020, 3, 306-322.	12.8	66
23	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	14.9	276
24	Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zinc-Air Batteries. Nano Letters, 2020, 20, 2892-2898.	9.1	68
25	Confined growth of pyridinic N–Mo ₂ C sites on MXenes for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7109-7116.	10.3	148
26	Structural and Electronic Optimization of MoS ₂ Edges for Hydrogen Evolution. Journal of the American Chemical Society, 2019, 141, 18578-18584.	13.7	292
27	Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 40512-40523.	8.0	230
28	Twoâ€Ðimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	21.0	93
29	Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Research, 2019, 12, 1613-1618.	10.4	62
30	Scalable Synthesis of Ultrathin Mn ₃ N ₂ Exhibiting Roomâ€Temperature Antiferromagnetism. Advanced Functional Materials, 2019, 29, 1809001.	14.9	67
31	Environmentalâ€Friendly Urea Additive Induced Large Perovskite Grains for High Performance Inverted Solar Cells. Solar Rrl, 2018, 2, 1800054.	5.8	51
32	In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 7134-7144.	8.0	227
33	Recent developments in electrochemical hydrogen evolution reaction. Current Opinion in Electrochemistry, 2018, 7, 7-14.	4.8	95
34	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	38.1	232
35	Optimizing MoS ₂ Edges by Alloying Isovalent W for Robust Hydrogen Evolution Activity. ACS Catalysis, 2018, 8, 9529-9536.	11.2	83
36	Nitrile chain reactions for cyano-based ionic liquid derived mesoporous carbon as efficient bifunctional electrocatalyst. Electrochimica Acta, 2018, 280, 258-265.	5.2	9

HAO WANG

#	Article	IF	CITATIONS
37	Silk fibroin-derived peptide directed silver nanoclusters for cell imaging. RSC Advances, 2018, 8, 27805-27810.	3.6	13
38	Sulfurâ€Doped Rhenium Selenide Vertical Nanosheets: A Highâ€Performance Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2018, 10, 4424-4430.	3.7	28
39	Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Research, 2017, 10, 1010-1020.	10.4	76
40	Electrochemical Performances of MoO2/C Nanocomposite for Sodium Ion Storage: An Insight into Rate Dependent Charge/Discharge Mechanism. Electrochimica Acta, 2017, 240, 379-387.	5.2	54
41	High-Performance Hydrogen Evolution Electrocatalyst Derived from Ni ₃ C Nanoparticles Embedded in a Porous Carbon Network. ACS Applied Materials & Interfaces, 2017, 9, 60-64.	8.0	68
42	Tuning Bandgap of <i>p</i> -Type Cu ₂ Zn(Sn, Ge)(S, Se) ₄ Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition. ACS Applied Materials & Interfaces, 2017, 9, 1602-1608.	8.0	29
43	Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon, 2017, 114, 628-634.	10.3	94
44	Different toxicity of cadmium telluride, silicon, and carbon nanomaterials against hemocytes in silkworm, Bombyx mori. RSC Advances, 2017, 7, 50317-50327.	3.6	16
45	Hierarchically interconnected nitrogen-doped carbon nanosheets for an efficient hydrogen evolution reaction. Nanoscale, 2017, 9, 16342-16348.	5.6	33
46	Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem, 2017, 10, 3540-3546.	6.8	114
47	Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. International Journal of Nanomedicine, 2016, Volume 11, 3475-3485.	6.7	78
48	Tailorable electrochemical performance of spinel cathode materials via in-situ integrating a layered Li2MnO3 phase for lithium-ion batteries. Journal of Power Sources, 2016, 333, 43-52.	7.8	19
49	One-step aqueous solution route toward depositing transparent carbon film onto different quartize substrate. Materials Letters, 2016, 185, 135-138.	2.6	2
50	Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach. Nanoscale Research Letters, 2016, 11, 457.	5.7	19
51	High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets. Nanotechnology, 2016, 27, 405401.	2.6	9
52	Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. RSC Advances, 2016, 6, 110604-110609.	3.6	43
53	Nitrogen-Doped Carbon Dots for "green―Quantum Dot Solar Cells. Nanoscale Research Letters, 2016, 11, 27.	5.7	146
54	A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Materials Letters, 2016, 167, 102-105.	2.6	64

HAO WANG

#	Article	IF	CITATIONS
55	Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions. Applied Physics Letters, 2015, 107, .	3.3	17
56	Water-Soluble Silicon Quantum Dots with Quasi-Blue Emission. Nanoscale Research Letters, 2015, 10, 1012.	5.7	6
57	A new chemosensor for Ga ³⁺ detection by fluorescent nitrogen-doped graphitic carbon dots. RSC Advances, 2015, 5, 13036-13041.	3.6	20
58	Three-armed imidazolium phenoxy ionic liquid as a novel crystal growth inhibitor for solid-state dye-sensitized solar cells. Materials Letters, 2015, 160, 135-138.	2.6	2
59	Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports, 2015, 5, 8669.	3.3	212
60	Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Materials, 2015, 3, .	5.1	42
61	High-stability Ti 4+ precursor for the TiO 2 compact layer of dye-sensitized solar cells. Applied Surface Science, 2015, 356, 587-592.	6.1	9
62	An alternative route towards monodisperse CdS quantum dots forÂhybrid solar cells. Materials Chemistry and Physics, 2015, 149-150, 124-128.	4.0	12
63	Intercrossed Carbon Nanorings with Pure Surface States as Lowâ€Cost and Environmentâ€Friendly Phosphors for Whiteâ€Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2015, 54, 1759-1764.	13.8	238
64	Low temperature route synthesis of SiC–Al2O3hetero-structural nanofibers. Nanotechnology, 2014, 25, 014017.	2.6	1
65	Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells Journal of Materials Chemistry A 2013 1, 6880	10.3	92