Michelle Monje

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094025/publications.pdf Version: 2024-02-01

	31976	30087
17,034	53	103
citations	h-index	g-index
125	125	19403
155	155	19403
docs citations	times ranked	citing authors
	17,034 citations 135 docs citations	17,034 citations 135 docs citations 135 times ranked

#	Article	IF	CITATIONS
1	An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 2019, 178, 835-849.e21.	28.9	1,408
2	Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain. Science, 2014, 344, 1252304.	12.6	1,057
3	Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016, 539, 309-313.	27.8	875
4	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	12.6	743
5	Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 32, 520-537.e5.	16.8	716
6	Electrical and synaptic integration of glioma into neural circuits. Nature, 2019, 573, 539-545.	27.8	706
7	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	16.8	633
8	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552.	8.1	606
9	Neuronal Activity Promotes Clioma Growth through Neuroligin-3 Secretion. Cell, 2015, 161, 803-816.	28.9	550
10	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	27.8	480
11	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
12	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	12.6	461
13	Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 2014, 46, 457-461.	21.4	423
14	CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 2019, 25, 2560-2574.	7.0	369
15	Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 2017, 549, 533-537.	27.8	350
16	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	27.8	339
17	Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nature Medicine, 2018, 24, 572-579.	30.7	321
18	Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	12.4	306

#	Article	IF	CITATIONS
19	Clinical Patterns and Biological Correlates of Cognitive Dysfunction Associated with Cancer Therapy. Oncologist, 2008, 13, 1285-1295.	3.7	297
20	Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 31, 635-652.e6.	16.8	290
21	Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron, 2020, 105, 150-164.e6.	8.1	263
22	Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4453-4458.	7.1	262
23	Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nature Medicine, 2014, 20, 732-740.	30.7	255
24	Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell, 2022, 185, 2452-2468.e16.	28.9	237
25	Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell, 2019, 176, 43-55.e13.	28.9	222
26	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
27	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
28	Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment. Neuron, 2019, 103, 250-265.e8.	8.1	177
29	Wrapped to Adapt: Experience-Dependent Myelination. Neuron, 2017, 95, 743-756.	8.1	175
30	Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behavioural Brain Research, 2012, 227, 376-379.	2.2	172
31	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	30.7	172
32	Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell, 2017, 170, 845-859.e19.	28.9	159
33	Myelin Plasticity and Nervous System Function. Annual Review of Neuroscience, 2018, 41, 61-76.	10.7	153
34	Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells. Nature Medicine, 2018, 24, 1204-1215.	30.7	133
35	Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Science Translational Medicine, 2019, 11, .	12.4	129
36	Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2018, 6, 51.	5.2	115

#	Article	IF	CITATIONS
37	Developmental origins and emerging therapeutic opportunities for childhood cancer. Nature Medicine, 2019, 25, 367-376.	30.7	112
38	Histone Variant and Cell Context Determine H3K27M Reprogramming of the Enhancer Landscape and Oncogenic State. Molecular Cell, 2019, 76, 965-980.e12.	9.7	110
39	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	30.7	105
40	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	12.8	96
41	Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro-Oncology, 2017, 19, 1279-1280.	1.2	93
42	NF1 mutation drives neuronalÂactivity-dependent initiation of optic glioma. Nature, 2021, 594, 277-282.	27.8	91
43	Cranial radiation therapy and damage to hippocampal neurogenesis. Developmental Disabilities Research Reviews, 2008, 14, 238-242.	2.9	89
44	Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Current Neuropharmacology, 2017, 15, 88-97.	2.9	88
45	Myelin plasticity in the central nervous system. Neuropharmacology, 2016, 110, 563-573.	4.1	84
46	Neuronal Activity in Ontogeny and Oncology. Trends in Cancer, 2017, 3, 89-112.	7.4	80
47	CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biology, 2020, 21, 83.	8.8	76
48	Subventricular spread of diffuse intrinsic pontine glioma. Acta Neuropathologica, 2014, 128, 605-607.	7.7	74
49	Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Current Treatment Options in Neurology, 2019, 21, 37.	1.8	73
50	ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Communications Biology, 2019, 2, 156.	4.4	73
51	Bad wrap: Myelin and myelin plasticity in health and disease. Developmental Neurobiology, 2018, 78, 123-135.	3.0	70
52	Human pontine glioma cells can induce murine tumors. Acta Neuropathologica, 2014, 127, 897-909.	7.7	63
53	Activity Shapes Neural Circuit Form and Function: A Historical Perspective. Journal of Neuroscience, 2020, 40, 944-954.	3.6	62
54	Microglia in Cancer Therapy-Related Cognitive Impairment. Trends in Neurosciences, 2021, 44, 441-451.	8.6	56

#	Article	IF	CITATIONS
55	An active role for neurons in glioma progression: making sense of Scherer's structures. Neuro-Oncology, 2018, 20, 1292-1299.	1.2	50
56	Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2013, 60, 293-300.	1.5	49
57	Monosynaptic tracing maps brain-wide afferent oligodendrocyte precursor cell connectivity. ELife, 2019, 8, .	6.0	49
58	Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Current Opinion in Oncology, 2019, 31, 522-530.	2.4	45
59	Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-Oncology, 2020, 22, 1302-1314.	1.2	42
60	Neuronal activity in the glioma microenvironment. Current Opinion in Neurobiology, 2017, 47, 156-161.	4.2	41
61	Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Reports, 2020, 33, 108286.	6.4	39
62	Settling a Nervous Stomach: The Neural Regulation of Enteric Cancer. Cancer Cell, 2017, 31, 1-2.	16.8	34
63	A Protocol for Rapid Post-mortem Cell Culture of Diffuse Intrinsic Pontine Glioma (DIPG). Journal of Visualized Experiments, 2017, , .	0.3	33
64	Maladaptive myelination promotes generalized epilepsy progression. Nature Neuroscience, 2022, 25, 596-606.	14.8	33
65	International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2019, 141, 253-263.	2.9	30
66	Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nature Communications, 2022, 13, 2785.	12.8	29
67	CD58 Aberrations Limit Durable Responses to CD19 CAR in Large B Cell Lymphoma Patients Treated with Axicabtagene Ciloleucel but Can be Overcome through Novel CAR Engineering. Blood, 2020, 136, 53-54.	1.4	28
68	The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease. Journal of Neuro-Oncology, 2017, 132, 323-331.	2.9	27
69	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	12.8	27
70	Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment. Current Opinion in Oncology, 2019, 31, 531-539.	2.4	26
71	TERT and DNMT1 expression predict sensitivity to decitabine in gliomas. Neuro-Oncology, 2021, 23, 76-87.	1.2	24
72	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	13.2	23

#	Article	IF	CITATIONS
73	Synaptic Communication in Brain Cancer. Cancer Research, 2020, 80, 2979-2982.	0.9	22
74	Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors. Journal of Pediatrics, 2017, 185, 173-180.e3.	1.8	21
75	Neurological complications following treatment of children with brain tumors. Journal of Pediatric Rehabilitation Medicine, 2011, 4, 31-36.	0.5	16
76	H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Reports, 2022, 39, 110836.	6.4	16
77	Microenvironmental interactions of oligodendroglial cells. Developmental Cell, 2021, 56, 1821-1832.	7.0	15
78	MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neuro-Oncology Advances, 2021, 3, vdab042.	0.7	14
79	The Neural Regulation of Cancer. Annual Review of Cancer Biology, 2020, 4, 371-390.	4.5	12
80	Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-Oncology, 2021, 23, 1304-1314.	1.2	12
81	DIPG-22. A PHASE 1 TRIAL OF THE HISTONE DEACETYLASE INHIBITOR PANOBINOSTAT IN PEDIATRIC PATIENTS WITH RECURRENT OR REFRACTORY DIFFUSE INTRINSIC PONTINE GLIOMA: A PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) STUDY. Neuro-Oncology, 2018, 20, i53-i53.	1.2	10
82	A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels. Acta Biomaterialia, 2020, 116, 201-208.	8.3	10
83	The bright and the dark side of myelin plasticity: Neuron-glial interactions in health and disease. Seminars in Cell and Developmental Biology, 2021, 116, 10-15.	5.0	10
84	Neural Signaling in Cancer. Annual Review of Neuroscience, 2022, 45, 199-221.	10.7	10
85	Characteristics of patients ≥10 years of age with diffuse intrinsic pontine glioma: a report from the International DIPG/DMG Registry. Neuro-Oncology, 2022, 24, 141-152.	1.2	9
86	Abstract CT031: GD2 CAR T cells mediate clinical activity and manageable toxicity in children and young adults with DIPG and H3K27M-mutated diffuse midline gliomas. , 2021, , .		7
87	Open questions: why are babies rarely born with cancer?. BMC Biology, 2018, 16, 129.	3.8	6
88	EPCT-14. GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG. Neuro-Oncology, 2021, 23, i49-i50.	1.2	6
89	Unravelling the Mechanisms of Cancer-Related Cognitive Dysfunction in Non–Central Nervous System Cancer. JAMA Oncology, 2021, 7, 1311.	7.1	6
90	Pediatric Brain Tumors. CONTINUUM Lifelong Learning in Neurology, 2020, 26, 1553-1583.	0.8	6

#	Article	IF	CITATIONS
91	Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model. ELife, 2022, 11, .	6.0	6
92	DIPG-03. TARGETING PI3K USING THE BLOOD BRAIN BARRIER PENETRABLE INHIBITOR, GDC-0084, FOR THE TREATMENT OF DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2019, 21, ii68-ii68.	1.2	5
93	Understanding the Deadly Silence of Posterior Fossa A Ependymoma. Molecular Cell, 2020, 78, 999-1001.	9.7	5
94	NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors—Histone Mutated Midline Glioma Workshop Proceedings*. Neuro-Oncology Advances, 2020, 2, vdaa007.	0.7	4
95	BT-02 * FUNCTIONALLY-DEFINED THERAPEUTIC TARGETS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2015, 17, iii3-iii3.	1.2	2
96	IMMU-19. LSD1 MODULATES NK CELL IMMUNOTHERAPY THROUGH AN ONCO-IMMUNOGENIC GENE SIGNATURE IN DIPG. Neuro-Oncology, 2018, 20, i102-i102.	1.2	2
97	Treating cancer therapy–related cognitive impairment. Nature Medicine, 2020, 26, 1174-1175.	30.7	2
98	Bespoke myelin tailored to neuron type. Science, 2020, 370, 1414-1415.	12.6	2
99	Neurologic Complications of Oncologic Therapy. , 2016, , 125-142.		1
100	HGG-22. TARGETING NEURONAL ACTIVITY-REGULATED NEUROLIGIN-3 DEPENDENCY FOR HIGH-GRADE GLIOMA THERAPY. Neuro-Oncology, 2017, 19, iv27-iv27.	1.2	1
101	DIPG-41. IDENTIFICATION OF BIRC5 AS A NOVEL THERAPEUTIC TARGET FOR DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, i57-i57.	1.2	1
102	DIPG-69. CHARACTERISTICS OF PATIENTS ≥ 10 YEARS OF AGE WITH DIFFUSE INTRINSIC PONTINE GLIOMA: A REPORT FROM THE INTERNATIONAL DIPG REGISTRY. Neuro-Oncology, 2018, 20, i63-i63.	1.2	1
103	DIPG-29. PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE 3-KINASE (PI3K) INHIBITION DRIVES PROTEIN KINASE C ACTIVATION (PKC) IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2020, 22, iii292-iii293.	1.2	1
104	ME-04 * SUBVENTRICULAR SPREAD OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2014, 16, v120-v120.	1.2	0
105	PTPS-24MECHANISMS OF DIFFUSE INTRINSIC PONTINE GLIOMA METASTASIS TO THE SUBVENTRICULAR ZONE. Neuro-Oncology, 2015, 17, v184.3-v184.	1.2	0
106	Inflaming glioma growth. Neuro-Oncology, 2019, 21, 1213-1214.	1.2	0
107	TMIC-46. GLIOMA-INDUCED SYNAPTOGENESIS IS ENRICHED WITHIN FUNCTIONAL CONNECTIVITY NETWORK HUBS AND INFLUENCES LANGUAGE PROCESSING IN ADULT IDH WT GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi257-vi258.	1.2	0
108	HGC-06. EARLY GABAERGIC NEURONAL LINEAGE DEFINES DEPENDENCIES IN HISTONE H3 G34R/V GLIOMA. Neuro-Oncology, 2021, 23, i18-i18.	1.2	0

#	Article	IF	CITATIONS
109	DIPG-32. AKT SIGNALING DRIVES RESISTANCE TO ONC201 IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2020, 22, iii293-iii293.	1.2	0
110	EXTH-67. PHARMACOLOGIC INHIBITION OF LYSINE SPECIFIC DEMETHYLASE-1 (LSD1) AS AN ADJUVANT IMMUNE-SENSITIZATION STRATEGY IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2020, 22, ii102-ii102.	1.2	0
111	EXTH-37. TARGETING EPIGENETIC VULNERABILITIES IDENTIFIED FROM A CRISPR SCREEN IN H3.3K27M DIPG. Neuro-Oncology, 2020, 22, ii95-ii95.	1.2	0
112	NIMG-31. NON-DIPG PATIENTS ENROLLED IN THE INTERNATIONAL DIPG REGISTRY: HISTOPATHOLOGIC EVALUATION OF CENTRAL NEURO-IMAGING REVIEW. Neuro-Oncology, 2020, 22, ii154-ii154.	1.2	0
113	IMMU-55. GD2 IS A MACROPHAGE CHECKPOINT MOLECULE AND COMBINED GD2/CD47 BLOCKADE RESULTS IN SYNERGISTIC EFFECTS AGAINST GD2 POSITIVE MALIGNANCIES. Neuro-Oncology, 2020, 22, ii116-ii116.	1.2	0
114	TMOD-13. RESEARCH RESOURCES FOR OLIGODENDROGLIOMA NOW AVAILABLE TO RESEARCH COMMUNITY. Neuro-Oncology, 2020, 22, ii230-ii230.	1.2	0
115	EPCO-26. PROJECT HOPE: "PEDIATRIC AND AYA HIGH-GRADE GLIOMA OMICS PROJECT― A LONGITUDINAL MOLECULAR LANDSCAPE OF HIGH-GRADE GLIOMAS RESOLVED AT SINGLE-CELL LEVEL. Neuro-Oncology, 2020, 22, ii74-ii75.	1.2	0
116	TAMI-21. MALIGNANT GLIOMAS REMODEL FUNCTIONAL NEURAL CIRCUITS THROUGH PARACRINE SIGNALING WHICH CONFERS A NEGATIVE PROGNOSIS. Neuro-Oncology, 2020, 22, ii217-ii218.	1.2	0
117	MODL-17. The Childhood Brain Cancer Cell Line Atlas: A Resource for Biomarker Identification and Therapeutic Development. Neuro-Oncology, 2022, 24, i172-i172.	1.2	0