Qi Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093467/publications.pdf

Version: 2024-02-01

59 papers	2,619 citations	218677 26 h-index	197818 49 g-index
61 all docs	61 docs citations	61 times ranked	4453 citing authors

#	Article	IF	CITATIONS
1	Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death and Disease, 2022, 13, 149.	6.3	6
2	TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Communication and Signaling, 2022, 20, 45.	6. 5	6
3	Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. Journal of the American Society of Nephrology: JASN, 2022, , ASN.2021081145.	6.1	4
4	Imbalance of circulating innate lymphoid cell subpopulations in patients with chronic kidney disease. Clinical Immunology, 2022, 239, 109029.	3.2	1
5	Renal tubular cell binding of \hat{l}^2 -catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys. American Journal of Transplantation, 2021, 21, 727-739.	4.7	5
6	Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nature Metabolism, 2021, 3, 337-351.	11.9	61
7	Conventional Type 1 Dendritic Cells (cDC1) in Human Kidney Diseases: Clinico-Pathological Correlations. Frontiers in Immunology, 2021, 12, 635212.	4.8	2
8	Innate lymphoid cells in kidney diseases. Kidney International, 2021, 99, 1077-1087.	5.2	8
9	Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. Laboratory Investigation, 2021, 101, 1418-1426.	3.7	28
10	Promotion of \hat{l}^2 -Catenin/Forkhead Box Protein O Signaling Mediates Epithelial Repair in Kidney Injury. American Journal of Pathology, 2021, 191, 993-1009.	3.8	7
11	A DNA Nanoraft-Based Cytokine Delivery Platform for Alleviation of Acute Kidney Injury. ACS Nano, 2021, 15, 18237-18249.	14.6	31
12	Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury. Kidney International, 2020, 97, 130-142.	5.2	29
13	<scp>IL</scp> â€10 producing type 2 innate lymphoid cells prolong isletÂallograft survival. EMBO Molecular Medicine, 2020, 12, e12305.	6.9	36
14	Promotion of \hat{l}^2 -catenin/Foxo1 signaling ameliorates renal interstitial fibrosis. Laboratory Investigation, 2019, 99, 1689-1701.	3.7	20
15	Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell-mediated T cell activation. Nephrology Dialysis Transplantation, 2019, 34, 1853-1863.	0.7	16
16	FLT3/FLT3L-mediated CD103+ dendritic cells alleviates hepatic ischemia-reperfusion injury in mice via activation of treg cells. Biomedicine and Pharmacotherapy, 2019, 118, 109031.	5.6	12
17	Dendritic cellâ€targeted CD40 DNA vaccine suppresses Th17 and ameliorates progression of experimental autoimmune glomerulonephritis. Journal of Leukocyte Biology, 2019, 105, 809-819.	3.3	5
18	M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney International, 2019, 95, 760-773.	5.2	100

#	Article	IF	Citations
19	Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction. Nephrology Dialysis Transplantation, 2019, 34, 1657-1668.	0.7	25
20	The potential role of Ets-1 and miR-326 in CD19+B cells in the pathogenesis of patients with systemic lupus erythematosus. Clinical Rheumatology, 2019, 38, 1031-1038.	2.2	8
21	Increased sFRP3 expression correlated to senescence of endothelial cells in the aging process of mice. American Journal of Translational Research (discontinued), 2019, 11, 1810-1818.	0.0	2
22	Identification of differential gene expression in endothelial cells from young and aged mice using RNA-Seq technique. American Journal of Translational Research (discontinued), 2019, 11, 6553-6560.	0.0	4
23	Exposure to Concentrated Ambient PM2.5 Compromises Spermatogenesis in a Mouse Model: Role of Suppression of Hypothalamus-Pituitary-Gonads Axis. Toxicological Sciences, 2018, 162, 318-326.	3.1	55
24	Potentiating Tissue-Resident Type 2 Innate Lymphoid Cells by IL-33 to Prevent Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2018, 29, 961-976.	6.1	102
25	Redirecting TGF-Î ² Signaling through the Î ² -Catenin/Foxo Complex Prevents Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2018, 29, 557-570.	6.1	55
26	Therapeutic potential of regulatory macrophages generated from peritoneal dialysate in adriamycin nephropathy. American Journal of Physiology - Renal Physiology, 2018, 314, F561-F571.	2.7	10
27	Alteration of circulating innate lymphoid cells in patients with atherosclerotic cerebral infarction. American Journal of Translational Research (discontinued), 2018, 10, 4322-4330.	0.0	7
28	Increased Th9 cells and IL-9 levels accelerate disease progression in experimental atherosclerosis. American Journal of Translational Research (discontinued), 2017, 9, 1335-1343.	0.0	5
29	Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biology, 2016, 17, 21.	3.0	52
30	$\hat{l}\pm 3$ Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice. American Journal of Pathology, 2016, 186, 1847-1860.	3.8	29
31	Autophagy links \hat{l}^2 -catenin and Smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase. International Journal of Biochemistry and Cell Biology, 2016, 76, 123-134.	2.8	42
32	Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial–mesenchymal transition. Nephrology Dialysis Transplantation, 2016, 32, gfw308.	0.7	28
33	Development and function of Foxp3 ⁺ regulatory T cells. Nephrology, 2016, 21, 81-85.	1.6	24
34	CD103+ Dendritic Cells Elicit CD8+ T Cell Responses to Accelerate Kidney Injury in Adriamycin Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 1344-1360.	6.1	49
35	A Reparative Role for Macrophages in Kidney Disease. , 2016, , 417-426.		0
36	IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 2199-2211.	6.1	74

#	Article	IF	CITATIONS
37	Macrophages in Kidney Injury, Inflammation, and Fibrosis. Physiology, 2015, 30, 183-194.	3.1	225
38	Renal F4/80+CD11c+ Mononuclear Phagocytes Display Phenotypic and Functional Characteristics of Macrophages in Health and in Adriamycin Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 349-363.	6.1	87
39	Expression and Role of CD166 in the Chronic Kidney Disease. Iranian Journal of Pediatrics, 2015, 25, e543.	0.3	5
40	Isolation and epithelial co-culture of mouse renal peritubular endothelial cells. BMC Cell Biology, 2014, 15, 40.	3.0	19
41	Macrophage heterogeneity, phenotypes, and roles in renal fibrosis. Kidney International Supplements, 2014, 4, 16-19.	14.2	43
42	The Role of Dendritic Cells in Renal Inflammation. Current Pathobiology Reports, 2014, 2, 225-234.	3.4	1
43	Adoptive Transfer of Bone Marrow Dendritic Cells Failed to Localize in the Renal Cortex and to Improve Renal Injury in Adriamycin Nephropathy. Nephron Experimental Nephrology, 2014, 126, 8-15.	2.2	5
44	Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney International, 2014, 85, 794-806.	5.2	56
45	Regulatory T cells require renal antigen recognition through the TCR to protect against injury in nephritis. International Journal of Clinical and Experimental Pathology, 2014, 7, 38-47.	0.5	4
46	Association of \hat{l}^2 -catenin with P-Smad3 but not LEF-1 dissociates <i>in vitro</i> profibrotic from anti-inflammatory effects of TGF- \hat{l}^2 1. Journal of Cell Science, 2013, 126, 67-76.	2.0	48
47	Discrete functions of M 2a and M 2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney International, 2013, 84, 745-755.	5.2	185
48	Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology, 2013, 14, 6.	2.2	162
49	Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Laboratory Investigation, 2013, 93, 434-449.	3.7	130
50	Pathogenic and protective role of macrophages in kidney disease. American Journal of Physiology - Renal Physiology, 2013, 305, F3-F11.	2.7	64
51	DNA vaccine encoding CD40 targeted to dendritic cells in situ prevents the development of Heymann nephritis in rats. Kidney International, 2013, 83, 223-232.	5. 2	20
52	Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease. Kidney International, 2012, 81, 892-902.	5 . 2	23
53	Transfused Macrophages Ameliorate Pancreatic and Renal Injury in Murine Diabetes Mellitus. Nephron Experimental Nephrology, 2011, 118, e87-e99.	2.2	68
54	Role of Macrophages in Renal Injury, Repair and Regeneration. , 2011, , 125-139.		1

#	Article	IF	CITATIONS
55	IL-25 Induces M2 Macrophages and Reduces Renal Injury in Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 1229-1239.	6.1	69
56	IL-10/TGF-β–Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 933-942.	6.1	229
57	Macrophage Matrix Metalloproteinase-9 Mediates Epithelial-Mesenchymal Transition in Vitro in Murine Renal Tubular Cells. American Journal of Pathology, 2010, 176, 1256-1270.	3.8	130
58	By Homing to the Kidney, Activated Macrophages Potently Exacerbate Renal Injury. American Journal of Pathology, 2008, 172, 1491-1499.	3.8	67
59	Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells. Cell Research, 2007, 17, 627-637.	12.0	29