

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-10/TGF-β–Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 933-942.	6.1	229
2	Macrophages in Kidney Injury, Inflammation, and Fibrosis. Physiology, 2015, 30, 183-194.	3.1	225
3	Discrete functions of M 2a and M 2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney International, 2013, 84, 745-755.	5.2	185
4	Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology, 2013, 14, 6.	2.2	162
5	Macrophage Matrix Metalloproteinase-9 Mediates Epithelial-Mesenchymal Transition in Vitro in Murine Renal Tubular Cells. American Journal of Pathology, 2010, 176, 1256-1270.	3.8	130
6	Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Laboratory Investigation, 2013, 93, 434-449.	3.7	130
7	Potentiating Tissue-Resident Type 2 Innate Lymphoid Cells by IL-33 to Prevent Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2018, 29, 961-976.	6.1	102
8	M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney International, 2019, 95, 760-773.	5.2	100
9	Renal F4/80+CD11c+ Mononuclear Phagocytes Display Phenotypic and Functional Characteristics of Macrophages in Health and in Adriamycin Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 349-363.	6.1	87
10	IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 2199-2211.	6.1	74
11	IL-25 Induces M2 Macrophages and Reduces Renal Injury in Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 1229-1239.	6.1	69
12	Transfused Macrophages Ameliorate Pancreatic and Renal Injury in Murine Diabetes Mellitus. Nephron Experimental Nephrology, 2011, 118, e87-e99.	2.2	68
13	By Homing to the Kidney, Activated Macrophages Potently Exacerbate Renal Injury. American Journal of Pathology, 2008, 172, 1491-1499.	3.8	67
14	Pathogenic and protective role of macrophages in kidney disease. American Journal of Physiology - Renal Physiology, 2013, 305, F3-F11.	2.7	64
15	Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nature Metabolism, 2021, 3, 337-351.	11.9	61
16	Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney International, 2014, 85, 794-806.	5.2	56
17	Exposure to Concentrated Ambient PM2.5 Compromises Spermatogenesis in a Mouse Model: Role of Suppression of Hypothalamus-Pituitary-Gonads Axis. Toxicological Sciences, 2018, 162, 318-326.	3.1	55
18	Redirecting TGF-β Signaling through the β-Catenin/Foxo Complex Prevents Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2018, 29, 557-570.	6.1	55

Qι Cao

#	Article	IF	CITATIONS
19	Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biology, 2016, 17, 21.	3.0	52
20	CD103+ Dendritic Cells Elicit CD8+ T Cell Responses to Accelerate Kidney Injury in Adriamycin Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 1344-1360.	6.1	49
21	Association of β-catenin with P-Smad3 but not LEF-1 dissociates <i>in vitro</i> profibrotic from anti-inflammatory effects of TGF-β1. Journal of Cell Science, 2013, 126, 67-76.	2.0	48
22	Macrophage heterogeneity, phenotypes, and roles in renal fibrosis. Kidney International Supplements, 2014, 4, 16-19.	14.2	43
23	Autophagy links β-catenin and Smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase. International Journal of Biochemistry and Cell Biology, 2016, 76, 123-134.	2.8	42
24	<scp>IL</scp> â€10 producing type 2 innate lymphoid cells prolong isletÂallograft survival. EMBO Molecular Medicine, 2020, 12, e12305.	6.9	36
25	A DNA Nanoraft-Based Cytokine Delivery Platform for Alleviation of Acute Kidney Injury. ACS Nano, 2021, 15, 18237-18249.	14.6	31
26	Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells. Cell Research, 2007, 17, 627-637.	12.0	29
27	α3 Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice. American Journal of Pathology, 2016, 186, 1847-1860.	3.8	29
28	Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury. Kidney International, 2020, 97, 130-142.	5.2	29
29	Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial–mesenchymal transition. Nephrology Dialysis Transplantation, 2016, 32, gfw308.	0.7	28
30	Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. Laboratory Investigation, 2021, 101, 1418-1426.	3.7	28
31	Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction. Nephrology Dialysis Transplantation, 2019, 34, 1657-1668.	0.7	25
32	Development and function of Foxp3 ⁺ regulatory T cells. Nephrology, 2016, 21, 81-85.	1.6	24
33	Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease. Kidney International, 2012, 81, 892-902.	5.2	23
34	DNA vaccine encoding CD40 targeted to dendritic cells in situ prevents the development of Heymann nephritis in rats. Kidney International, 2013, 83, 223-232.	5.2	20
35	Promotion of β-catenin/Foxo1 signaling ameliorates renal interstitial fibrosis. Laboratory Investigation, 2019, 99, 1689-1701.	3.7	20
36	Isolation and epithelial co-culture of mouse renal peritubular endothelial cells. BMC Cell Biology, 2014, 15, 40.	3.0	19

QI CAO

#	Article	IF	CITATIONS
37	Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell-mediated T cell activation. Nephrology Dialysis Transplantation, 2019, 34, 1853-1863.	0.7	16
38	FLT3/FLT3L-mediated CD103+ dendritic cells alleviates hepatic ischemia-reperfusion injury in mice via activation of treg cells. Biomedicine and Pharmacotherapy, 2019, 118, 109031.	5.6	12
39	Therapeutic potential of regulatory macrophages generated from peritoneal dialysate in adriamycin nephropathy. American Journal of Physiology - Renal Physiology, 2018, 314, F561-F571.	2.7	10
40	The potential role of Ets-1 and miR-326 in CD19+B cells in the pathogenesis of patients with systemic lupus erythematosus. Clinical Rheumatology, 2019, 38, 1031-1038.	2.2	8
41	Innate lymphoid cells in kidney diseases. Kidney International, 2021, 99, 1077-1087.	5.2	8
42	Promotion of β-Catenin/Forkhead Box Protein O Signaling Mediates Epithelial Repair in Kidney Injury. American Journal of Pathology, 2021, 191, 993-1009.	3.8	7
43	Alteration of circulating innate lymphoid cells in patients with atherosclerotic cerebral infarction. American Journal of Translational Research (discontinued), 2018, 10, 4322-4330.	0.0	7
44	Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death and Disease, 2022, 13, 149.	6.3	6
45	TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Communication and Signaling, 2022, 20, 45.	6.5	6
46	Adoptive Transfer of Bone Marrow Dendritic Cells Failed to Localize in the Renal Cortex and to Improve Renal Injury in Adriamycin Nephropathy. Nephron Experimental Nephrology, 2014, 126, 8-15.	2.2	5
47	Dendritic cellâ€ŧargeted CD40 DNA vaccine suppresses Th17 and ameliorates progression of experimental autoimmune glomerulonephritis. Journal of Leukocyte Biology, 2019, 105, 809-819.	3.3	5
48	Renal tubular cell binding of β-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys. American Journal of Transplantation, 2021, 21, 727-739.	4.7	5
49	Expression and Role of CD166 in the Chronic Kidney Disease. Iranian Journal of Pediatrics, 2015, 25, e543.	0.3	5
50	Increased Th9 cells and IL-9 levels accelerate disease progression in experimental atherosclerosis. American Journal of Translational Research (discontinued), 2017, 9, 1335-1343.	0.0	5
51	Regulatory T cells require renal antigen recognition through the TCR to protect against injury in nephritis. International Journal of Clinical and Experimental Pathology, 2014, 7, 38-47.	0.5	4
52	Identification of differential gene expression in endothelial cells from young and aged mice using RNA-Seq technique. American Journal of Translational Research (discontinued), 2019, 11, 6553-6560.	0.0	4
53	Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. Journal of the American Society of Nephrology: JASN, 2022, , ASN.2021081145.	6.1	4
54	Conventional Type 1 Dendritic Cells (cDC1) in Human Kidney Diseases: Clinico-Pathological Correlations. Frontiers in Immunology, 2021, 12, 635212.	4.8	2

QI CAO

#	Article	IF	CITATIONS
55	Increased sFRP3 expression correlated to senescence of endothelial cells in the aging process of mice. American Journal of Translational Research (discontinued), 2019, 11, 1810-1818.	0.0	2
56	Role of Macrophages in Renal Injury, Repair and Regeneration. , 2011, , 125-139.		1
57	The Role of Dendritic Cells in Renal Inflammation. Current Pathobiology Reports, 2014, 2, 225-234.	3.4	1
58	Imbalance of circulating innate lymphoid cell subpopulations in patients with chronic kidney disease. Clinical Immunology, 2022, 239, 109029.	3.2	1
59	A Reparative Role for Macrophages in Kidney Disease. , 2016, , 417-426.		0