
Friedhelm Schroeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in Highâ€FatPairâ€FedMice. Lipids, 2020, 55, 309-327.	1.7	2
2	Sterol Carrier Proteinâ€2/Sterol Carrier Proteinâ€x/Fatty Acid Binding Proteinâ€1 Ablation Impacts Response of Brain Endocannabinoid to Highâ€Fat Diet. Lipids, 2019, 54, 583-601.	1.7	9
3	Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 985-1004.	2.4	12
4	Endothelial nitric oxide synthase protein distribution and nitric oxide production in endothelial cells along the coronary vascular tree. Microvascular Research, 2019, 122, 34-40.	2.5	7
5	Human Liver Fatty Acid Binding Proteinâ€1 T94A Variant, Nonalcohol Fatty Liver Disease, and Hepatic Endocannabinoid System. Lipids, 2018, 53, 27-40.	1.7	9
6	Ablating both Fabp1 and Scp2/Scpx (TKO) induces hepatic phospholipid and cholesterol accumulation in high fat-fed mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 323-338.	2.4	9
7	Δ9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation. Journal of Lipid Research, 2018, 59, 646-657.	4.2	14
8	Structural and Functional Interaction of Δ ⁹ -Tetrahydrocannabinol with Liver Fatty Acid Binding Protein (FABP1). Biochemistry, 2018, 57, 6027-6042.	2.5	8
9	Impact of <i>Fabp1</i> Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes. Lipids, 2018, 53, 561-580.	1.7	12
10	Scp-2/Scp-x ablation in Fabp1 null mice differentially impacts hepatic endocannabinoid level depending on dietary fat. Archives of Biochemistry and Biophysics, 2018, 650, 93-102.	3.0	3
11	<i>Fabp1</i> gene ablation inhibits highâ€fat dietâ€induced increase in brain endocannabinoids. Journal of Neurochemistry, 2017, 140, 294-306.	3.9	24
12	Impact of Fabp1/Scp-2/Scp-x gene ablation (TKO) on hepatic phytol metabolism in mice. Journal of Lipid Research, 2017, 58, 1153-1165.	4.2	9
13	Effect of <i>Fabp1/Scp</i> â€ <i>2/Scp</i> â€ <i>x</i> Ablation on Whole Body and Hepatic Phenotype of Phytolâ€Fed Male Mice. Lipids, 2017, 52, 385-397.	1.7	9
14	Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 291-304.	2.4	13
15	Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. Journal of Lipid Research, 2017, 58, 2114-2126.	4.2	16
16	Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism. Archives of Biochemistry and Biophysics, 2017, 635, 17-26.	3.0	3
17	Endocannabinoid Transport Proteins. Methods in Enzymology, 2017, 593, 99-121.	1.0	20
18	Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry, 2017, 56, 5147-5159	2.5	8

#	Article	IF	CITATIONS
19	Fatty Acid Binding Proteinâ€1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids, 2016, 51, 655-676.	1.7	41
20	Female Mice are Resistant to <i>Fabp1</i> Gene Ablationâ€Induced Alterations in Brain Endocannabinoid Levels. Lipids, 2016, 51, 1007-1020.	1.7	17
21	FABP1: A Novel Hepatic Endocannabinoid and Cannabinoid Binding Protein. Biochemistry, 2016, 55, 5243-5255.	2.5	47
22	<scp>FABP</scp> â€1 gene ablation impacts brain endocannabinoid system in male mice. Journal of Neurochemistry, 2016, 138, 407-422.	3.9	29
23	Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens. PLoS ONE, 2016, 11, e0158882.	2.5	15
24	Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Archives of Biochemistry and Biophysics, 2015, 580, 41-49.	3.0	28
25	Human FABP1 T94A variant enhances cholesterol uptake. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 946-955.	2.4	21
26	Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. American Journal of Physiology - Renal Physiology, 2015, 309, G387-G399.	3.4	29
27	Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice. Archives of Biochemistry and Biophysics, 2015, 588, 25-32.	3.0	9
28	Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. American Journal of Physiology - Renal Physiology, 2014, 307, G1130-G1143.	3.4	15
29	Structural and functional interaction of fatty acids with human liver fatty acidâ€binding protein (Lâ€ <scp>FABP</scp>) T94A variant. FEBS Journal, 2014, 281, 2266-2283.	4.7	33
30	Human FABP1 T94A variant impacts fatty acid metabolism and PPAR-α activation in cultured human female hepatocytes. American Journal of Physiology - Renal Physiology, 2014, 307, G164-G176.	3.4	30
31	Liver Fatty Acid Binding Protein Geneâ€Ablation Exacerbates Weight Gain in Highâ€Fat Fed Female Mice. Lipids, 2013, 48, 435-448.	1.7	22
32	Liverâ€ŧype fatty acid binding protein interacts with hepatocyte nuclear factor 4α. FEBS Letters, 2013, 587, 3787-3791.	2.8	15
33	High glucose potentiates L-FABP mediated fibrate induction of PPARα in mouse hepatocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1412-1425.	2.4	25
34	Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes. American Journal of Physiology - Renal Physiology, 2013, 304, G241-G256.	3.4	40
35	The Human Liver Fatty Acid Binding Protein T94A Variant Alters the Structure, Stability, and Interaction with Fibrates. Biochemistry, 2013, 52, 9347-9357.	2.5	37
36	Inhibitors of Fatty Acid Synthesis Induce PPARα-Regulated Fatty Acidβ-Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Research, 2013, 2013, 1-22.	2.4	29

#	Article	IF	CITATIONS
37	Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2012, 303, G837-G850.	3.4	30
38	Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2012, 302, G824-G839.	3.4	28
39	Loss of liver FA binding protein significantly alters hepatocyte plasma membrane microdomains. Journal of Lipid Research, 2012, 53, 467-480.	4.2	13
40	HNF4α Antagonists Discovered by a High-Throughput Screen for Modulators of the Human Insulin Promoter. Chemistry and Biology, 2012, 19, 806-818.	6.0	67
41	Acyl-CoA binding proteins interact with the acyl-CoA binding domain of mitochondrial carnitine palmitoyl transferase I. Molecular and Cellular Biochemistry, 2011, 355, 135-148.	3.1	35
42	High Dietary Fat Exacerbates Weight Gain and Obesity in Female Liver Fatty Acid Binding Protein Gene-Ablated Mice. Lipids, 2010, 45, 97-110.	1.7	39
43	Acylâ€CoA Binding Protein Gene Ablation Induces Preâ€implantation Embryonic Lethality in Mice. Lipids, 2010, 45, 567-580.	1.7	39
44	Liver fatty acid-binding protein and obesity. Journal of Nutritional Biochemistry, 2010, 21, 1015-1032.	4.2	180
45	Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor α. Journal of Lipid Research, 2010, 51, 3103-3116.	4.2	37
46	Use of dansyl-cholestanol as a probe of cholesterol behavior in membranes of living cells. Journal of Lipid Research, 2010, 51, 1157-1172.	4.2	22
47	Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2010, 299, G244-G254.	3.4	32
48	Fluorescent n-3 and n-6 Very Long Chain Polyunsaturated Fatty Acids. Journal of Biological Chemistry, 2010, 285, 18693-18708.	3.4	26
49	Caveolin, Sterol Carrier Protein-2, Membrane Cholesterol-Rich Microdomains and Intracellular Cholesterol Trafficking. Sub-Cellular Biochemistry, 2010, 51, 279-318.	2.4	24
50	Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice. Journal of Lipid Research, 2009, 50, 1429-1447.	4.2	30
51	L-FABP directly interacts with PPARα in cultured primary hepatocytes. Journal of Lipid Research, 2009, 50, 1663-1675.	4.2	119
52	Phytol-induced Hepatotoxicity in Mice. Toxicologic Pathology, 2009, 37, 201-208.	1.8	41
53	Hepatic phenotype of liver fatty acid binding protein gene-ablated mice. American Journal of Physiology - Renal Physiology, 2009, 297, G1053-G1065.	3.4	59
54	Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Molecular and Cellular Biochemistry, 2009, 324, 101-115.	3.1	31

#	Article	IF	CITATIONS
55	Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 425-441.	2.6	22
56	Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-1± activity in cultured primary hepatocytes. Archives of Biochemistry and Biophysics, 2009, 485, 160-173.	3.0	46
57	Role of Fatty Acid Binding Proteins and Long Chain Fatty Acids in Modulating Nuclear Receptors and Gene Transcription. Lipids, 2008, 43, 1-17.	1.7	212
58	Fluorescence Techniques Using Dehydroergosterol to Study Cholesterol Trafficking. Lipids, 2008, 43, 1185-1208.	1.7	67
59	Structure of Dehydroergosterol Monohydrate and Interaction with Sterol Carrier Proteinâ€2. Lipids, 2008, 43, 1165-1184.	1.7	5
60	Structural and functional characterization of a new recombinant histidine-tagged acyl coenzyme A binding protein (ACBP) from mouse. Protein Expression and Purification, 2008, 58, 184-193.	1.3	7
61	Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence. Biochemistry, 2008, 47, 5915-5934.	2.5	38
62	Glucose Directly Links to Lipid Metabolism through High Affinity Interaction with Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2008, 283, 2246-2254.	3.4	33
63	A Novel High-Throughput Screening Assay for Putative Antidiabetic Agents through PPARα Interactions. Journal of Biomolecular Screening, 2008, 13, 855-861.	2.6	9
64	Membrane Domain Distributions: Analysis of Fluorescence Sterol Ex-change Kinetics. Current Analytical Chemistry, 2008, 4, 1-7.	1.2	8
65	Liver Fatty Acid-Binding Protein Gene-Ablated Female Mice Exhibit Increased Age-Dependent Obesity3. Journal of Nutrition, 2008, 138, 1859-1865.	2.9	36
66	Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. American Journal of Physiology - Renal Physiology, 2007, 292, G939-G951.	3.4	54
67	SCP-2/SCP-x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes. Journal of Lipid Research, 2007, 48, 2193-2211.	4.2	46
68	Full-Length, Glycosylated NSP4 Is Localized to Plasma Membrane Caveolae by a Novel Raft Isolation Technique. Journal of Virology, 2007, 81, 5472-5483.	3.4	41
69	Sterol carrier protein-2: New roles in regulating lipid rafts and signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 700-718.	2.4	72
70	Selective Cholesterol Dynamics between Lipoproteins and Caveolae/Lipid Rafts. Biochemistry, 2007, 46, 13891-13906.	2.5	29
71	A New N-Terminal Recognition Domain in Caveolin-1 Interacts with Sterol Carrier Protein-2 (SCP-2). Biochemistry, 2007, 46, 8301-8314.	2.5	21
72	Effect of Sterol Carrier Proteinâ€⊋ Expression on Sphingolipid Distribution in Plasma Membrane Lipid Rafts/Caveolae. Lipids, 2007, 42, 871-884.	1.7	21

#	Article	IF	CITATIONS
73	Multiphoton Laser-Scanning Microscopy and Spatial Analysis of Dehydroergosterol Distributions on Plasma Membrane of Living Cells. Methods in Molecular Biology, 2007, 398, 85-105.	0.9	9
74	Structure and Cholesterol Dynamics of Caveolae/Raft and Nonraft Plasma Membrane Domainsâ€. Biochemistry, 2006, 45, 12100-12116.	2.5	40
75	Very-Long-Chain and Branched-Chain Fatty Acyl-CoAs Are High Affinity Ligands for the Peroxisome Proliferator-Activated Receptor α (PPARα). Biochemistry, 2006, 45, 7669-7681.	2.5	86
76	Synthesis of a New Water-Soluble Rhodamine Derivative and Application to Protein Labeling and Intracellular Imaging. Bioconjugate Chemistry, 2006, 17, 1219-1225.	3.6	33
77	Water-Soluble Through-Bond Energy Transfer Cassettes for Intracellular Imaging. Journal of the American Chemical Society, 2006, 128, 10688-10689.	13.7	114
78	Sterol carrier protein-2 expression alters sphingolipid metabolism in transfected mouse L-cell fibroblasts. Molecular and Cellular Biochemistry, 2006, 283, 57-66.	3.1	11
79	Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. American Journal of Physiology - Renal Physiology, 2006, 290, G36-G48.	3.4	66
80	Intracellular Dissemination of Peroxidative Stress. Journal of Biological Chemistry, 2006, 281, 23643-23651.	3.4	31
81	Chapter 1 Lipid Rafts and Caveolae Organization. Advances in Molecular and Cell Biology, 2005, , 1-36.	0.1	9
82	Liver fatty-acid-binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice. Biochemical Journal, 2005, 391, 549-560.	3.7	58
83	Acyl-Coenzyme A Binding Protein Expression Alters Liver Fatty Acyl-Coenzyme A Metabolism. Biochemistry, 2005, 44, 10282-10297.	2.5	67
84	Stability of fatty acyl-coenzyme a thioester ligands of hepatocyte nuclear factor-4α and peroxisome proliferator-activated receptor-α. Lipids, 2005, 40, 559-568.	1.7	25
85	Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene. American Journal of Physiology - Cell Physiology, 2005, 288, C543-C558.	4.6	52
86	Peroxisome Proliferator-activated Receptor $\hat{I}\pm$ Interacts with High Affinity and Is Conformationally Responsive to Endogenous Ligands. Journal of Biological Chemistry, 2005, 280, 18667-18682.	3.4	148
87	Role of Regulatory F-domain in Hepatocyte Nuclear Factor-4α Ligand Specificity. Journal of Biological Chemistry, 2005, 280, 16714-16727.	3.4	22
88	Structural Analysis of Sterol Distributions in the Plasma Membrane of Living Cells. Biochemistry, 2005, 44, 2864-2884.	2.5	36
89	Sexually dimorphic metabolism of branched-chain lipids in C57BL/6J mice. Journal of Lipid Research, 2004, 45, 812-830.	4.2	63
90	Liver Fatty Acid-binding Protein Gene Ablation Inhibits Branched-chain Fatty Acid Metabolism in Cultured Primary Hepatocytes. Journal of Biological Chemistry, 2004, 279, 30954-30965.	3.4	91

#	Article	IF	CITATIONS
91	Liver fatty acid binding protein expression enhances branched-chain fatty acid metabolism. Molecular and Cellular Biochemistry, 2004, 259, 115-129.	3.1	44
92	Sterol Carrier Protein-2 Directly Interacts with Caveolin-1 in Vitro and in Vivoâ€. Biochemistry, 2004, 43, 7288-7306.	2.5	36
93	Liver Fatty Acid-Binding Protein Colocalizes with Peroxisome Proliferator Activated Receptor α and Enhances Ligand Distribution to Nuclei of Living Cellsâ€. Biochemistry, 2004, 43, 2484-2500.	2.5	94
94	Structure and cholesterol domain dynamics of an enriched caveolae/raft isolate. Biochemical Journal, 2004, 382, 451-461.	3.7	32
95	Fluorescence and Multiphoton Imaging Resolve Unique Structural Forms of Sterol in Membranes of Living Cells. Journal of Biological Chemistry, 2003, 278, 6384-6403.	3.4	55
96	Sterol Carrier Protein-2 Selectively Alters Lipid Composition and Cholesterol Dynamics of Caveolae/Lipid Raft vs Nonraft Domains in L-Cell Fibroblast Plasma Membranesâ€. Biochemistry, 2003, 42, 14583-14598.	2.5	40
97	Ablation of the Liver Fatty Acid Binding Protein Gene Decreases Fatty Acyl CoA Binding Capacity and Alters Fatty Acyl CoA Pool Distribution in Mouse Liver. Biochemistry, 2003, 42, 11520-11532.	2.5	57
98	Sterol Carrier Protein-2 Functions in Phosphatidylinositol Transfer and Signalingâ€. Biochemistry, 2003, 42, 3189-3202.	2.5	26
99	Sterol carrier protein-2/sterol carrier protein-x expression differentially alters fatty acid metabolism in L cell fibroblasts. Journal of Lipid Research, 2003, 44, 1751-1762.	4.2	23
100	Rescue of MODY-1 by Agonist Ligands of Hepatocyte Nuclear Factor-4α. Journal of Biological Chemistry, 2003, 278, 22578-22585.	3.4	26
101	Physical and Functional Interaction of Acyl-CoA-binding Protein with Hepatocyte Nuclear Factor-4α. Journal of Biological Chemistry, 2003, 278, 51813-51824.	3.4	72
102	Decreased Liver Fatty Acid Binding Capacity and Altered Liver Lipid Distribution in Mice Lacking the Liver Fatty Acid-binding Protein Gene. Journal of Biological Chemistry, 2003, 278, 21429-21438.	3.4	150
103	ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT. Journal of Lipid Research, 2003, 44, 72-83.	4.2	54
104	Liver Fatty Acid-binding Protein Targets Fatty Acids to the Nucleus. Journal of Biological Chemistry, 2002, 277, 29139-29151.	3.4	130
105	Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. American Journal of Physiology - Cell Physiology, 2002, 283, C688-C703.	4.6	79
106	Role of the Sterol Carrier Protein-2 N-Terminal Membrane Binding Domain in Sterol Transfer. Biochemistry, 2002, 41, 12149-12162.	2.5	23
107	Membrane Charge and Curvature Determine Interaction with Acyl-CoA Binding Protein (ACBP) and Fatty Acyl-CoA Targeting. Biochemistry, 2002, 41, 10540-10553.	2.5	45
108	Ligand Specificity and Conformational Dependence of the Hepatic Nuclear Factor-4α (HNF-4α). Journal of Biological Chemistry, 2002, 277, 23988-23999.	3.4	68

#	Article	IF	CITATIONS
109	Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiology of Aging, 2002, 23, 685-694.	3.1	139
110	Effects of Chronic Ethanol Consumption on Sterol Transfer Proteins in Mouse Brain. Journal of Neurochemistry, 2002, 66, 313-320.	3.9	36
111	Molecular and fluorescent sterol approaches to probing lysosomal membrane lipid dynamics. Chemistry and Physics of Lipids, 2002, 116, 19-38.	3.2	12
112	Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Progress in Lipid Research, 2001, 40, 498-563.	11.6	204
113	Sterol Carrier Protein-2 Expression Alters Plasma Membrane Lipid Distribution and Cholesterol Dynamicsâ€. Biochemistry, 2001, 40, 6493-6506.	2.5	54
114	Recent Advances in Membrane Microdomains: Rafts, Caveolae, and Intracellular Cholesterol Trafficking. Experimental Biology and Medicine, 2001, 226, 873-890.	2.4	128
115	Expression of liver fatty acid binding protein alters growth and differentiation of embryonic stem cells. Molecular and Cellular Biochemistry, 2001, 219, 127-138.	3.1	28
116	Sterol Carrier Protein-2 Expression Modulates Protein and Lipid Composition of Lipid Droplets. Journal of Biological Chemistry, 2001, 276, 25324-25335.	3.4	65
117	Steroidogenic Acute Regulatory Protein Binds Cholesterol and Modulates Mitochondrial Membrane Sterol Domain Dynamics. Journal of Biological Chemistry, 2001, 276, 36970-36982.	3.4	117
118	Lipid Domains and Biological Membrane Function. , 2001, , 81-94.		5
119	A potential role for sterol carrier protein-2 in cholesterol transfer to mitochondria. Chemistry and Physics of Lipids, 2000, 105, 9-29.	3.2	50
120	Sterol carrier protein-2 suppresses microsomal acyl-CoA hydrolysis. Molecular and Cellular Biochemistry, 2000, 205, 83-90.	3.1	17
121	Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids, 2000, 35, 729-738.	1.7	37
122	High Density Lipoprotein-mediated Cholesterol Uptake and Targeting to Lipid Droplets in Intact L-cell Fibroblasts. Journal of Biological Chemistry, 2000, 275, 12769-12780.	3.4	112
123	Pro-sterol Carrier Protein-2. Journal of Biological Chemistry, 2000, 275, 25547-25555.	3.4	56
124	Sterol Carrier Protein-2 Alters High Density Lipoprotein-mediated Cholesterol Efflux. Journal of Biological Chemistry, 2000, 275, 36852-36861.	3.4	74
125	Adipose differentiation related protein: expression, purification of recombinant protein in Escherichia coli and characterization of its fatty acid binding properties. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1488, 245-254.	2.4	41
126	Microsomal fatty acyl-CoA transacylation and hydrolysis: fatty acyl-CoA species dependent modulation by liver fatty acyl-CoA binding proteins11This work was supported in part by a grant from the USPHS National Institutes of Health, DK41402 Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1483, 185-197.	2.4	57

#	Article	IF	CITATIONS
127	Lysosomal Membrane Cholesterol Dynamicsâ€. Biochemistry, 2000, 39, 7662-7677.	2.5	48
128	Sterol carrier protein-2 expression alters phospholipid content and fatty acyl composition in L-cell fibroblasts. Journal of Lipid Research, 2000, 41, 788-796.	4.2	27
129	Holo-sterol Carrier Protein-2. Journal of Biological Chemistry, 1999, 274, 35425-35433.	3.4	66
130	Expression of fatty acid binding proteins is altered in aged mouse brain. Molecular and Cellular Biochemistry, 1999, 198, 69-78.	3.1	40
131	Recent advances in brain cholesterol dynamics: Transport, domains, and Alzheimer's disease. Lipids, 1999, 34, 225-234.	1.7	114
132	Isolation and identification of a mouse brain protein recognized by antisera to heart fatty acid-binding protein. Lipids, 1999, 34, 363-373.	1.7	10
133	Microsomal long chain fatty acyl-CoA transacylation: differential effect of sterol carrier protein-2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 371-383.	2.4	12
134	Isolation and characterization of two distinct forms of liver fatty acid binding protein from the rat. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 413-425.	2.4	43
135	Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1437, 37-45.	2.4	65
136	The Sterol Carrier Protein-2 Amino Terminus: A Membrane Interaction Domainâ€. Biochemistry, 1999, 38, 13231-13243.	2.5	47
137	Interaction of the N-terminus of sterol carrier protein 2 with membranes: role of membrane curvature. Biochemical Journal, 1999, 344, 593-603.	3.7	42
138	Interaction of the N-terminus of sterol carrier protein 2 with membranes: role of membrane curvature. Biochemical Journal, 1999, 344, 593.	3.7	14
139	Expression and intracellular processing of the 58 kDa sterol carrier protein-2/3-oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts. Journal of Lipid Research, 1999, 40, 610-622.	4.2	85
140	Cellular uptake and intracellular trafficking of long chain fatty acids. Journal of Lipid Research, 1999, 40, 1371-1383.	4.2	322
141	Fatty acid binding protein isoforms: structure and function. Chemistry and Physics of Lipids, 1998, 92, 1-25.	3.2	121
142	Differential influence of rat liver fatty acid binding protein isoforms on phospholipid fatty acid composition: phosphatidic acid biosynthesis and phospholipid fatty acid remodeling. Lipids and Lipid Metabolism, 1998, 1390, 258-268.	2.6	47
143	Isolation and Characterization of 26- and 30-kDa Rat Liver Proteins Immunoreactive to Anti-Sterol Carrier Protein-2 Antibodies. Protein Expression and Purification, 1998, 13, 337-348.	1.3	13
144	Structure and Function of Normal and Transformed Murine Acyl-CoA Binding Proteins. Archives of Biochemistry and Biophysics, 1998, 350, 201-213.	3.0	42

#	Article	IF	CITATIONS
145	Dietary fiber differentially alters cellular fatty acidâ€binding protein expression in exfoliated colonocytes during tumor development. Nutrition and Cancer, 1998, 32, 107-112.	2.0	20
146	Acyl Coenzyme A Binding Protein. Journal of Biological Chemistry, 1998, 273, 11049-11055.	3.4	59
147	Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion. American Journal of Physiology - Cell Physiology, 1998, 274, C633-C644.	4.6	73
148	Intracellular Sterol Binding Proteins: Cholesterol Transport and Membrane Domains. , 1998, , 213-234.		30
149	Isoforms of Rat Liver Fatty Acid Binding Protein Differ in Structure and Affinity for Fatty Acids and Fatty Acyl CoAsâ€. Biochemistry, 1997, 36, 6545-6555.	2.5	97
150	The Sterol Carrier Protein-2 Fatty Acid Binding Site: An NMR, Circular Dichroic, and Fluorescence Spectroscopic Determinationâ€. Biochemistry, 1997, 36, 1719-1729.	2.5	74
151	Time-Resolved Fluorescence of Intestinal and Liver Fatty Acid Binding Proteins:  Role of Fatty Acyl CoA and Fatty Acid. Biochemistry, 1997, 36, 505-517.	2.5	23
152	Metallothionein-IIAPromoter Induction Alters Rat Intestinal Fatty Acid Binding Protein Expression, Fatty Acid Uptake, and Lipid Metabolism in Transfected L-Cells. Archives of Biochemistry and Biophysics, 1997, 340, 135-143.	3.0	37
153	Fatty Acid Binding Protein: Stimulation of Microsomal Phosphatidic Acid Formation. Archives of Biochemistry and Biophysics, 1997, 341, 112-121.	3.0	100
154	Fatty acid uptake in diabetic rat adipocytes. Molecular and Cellular Biochemistry, 1997, 167, 1-10.	3.1	13
155	Expression of fatty acyl-CoA binding proteins in colon cells: response to butyrate and transformation. Lipids, 1997, 32, 577-585.	1.7	21
156	Lipid specificity and location of the sterol carrier protein-2 fatty acid-binding site: A fluorescence displacement and energy transfer study. Lipids, 1997, 32, 1201-1209.	1.7	55
157	Amyloid βâ€Peptides Increase Annular and Bulk Fluidity and Induce Lipid Peroxidation in Brain Synaptic Plasma Membranes. Journal of Neurochemistry, 1997, 68, 2086-2091.	3.9	92
158	Liver fatty acid-binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Lipids and Lipid Metabolism, 1996, 1301, 191-198.	2.6	130
159	Effect of Insulin on Fatty Acid Uptake and Esterification in L-Cell Fibroblasts. Archives of Biochemistry and Biophysics, 1996, 335, 267-272.	3.0	16
160	Recent Advances in Membrane Cholesterol Domain Dynamics and Intracellular Cholesterol Trafficking. Experimental Biology and Medicine, 1996, 213, 150-177.	2.4	125
161	Acyl-CoA binding proteins: Multiplicity and function. Lipids, 1996, 31, 895-918.	1.7	136
162	Liver and intestinal fatty acid binding proteins in control and TGF?1 gene targeted deficient mice. Molecular and Cellular Biochemistry, 1996, 159, 149-153.	3.1	8

3

#	ARTICLE	IF	CITATIONS
163	Fatty acid double bond orientation alters interaction with L-cell fibroblasts. Molecular and Cellular Biochemistry, 1996, 155, 113-9.	3.1	8
164	Intestinal fatty acid-binding protein expression stimulates fibroblast fatty acid esterification. Chemistry and Physics of Lipids, 1996, 84, 47-56.	3.2	55
165	Spontaneous and Protein-mediated Sterol Transfer between Intracellular Membranes. Journal of Biological Chemistry, 1996, 271, 16075-16083.	3.4	75
166	Sterol Carrier Protein-2, a New Fatty Acyl Coenzyme A-binding Protein. Journal of Biological Chemistry, 1996, 271, 31878-31884.	3.4	129
167	Isolation and Characterization of Two Fatty Acid Binding Proteins from Mouse Brain. Journal of Neurochemistry, 1996, 66, 1648-1656.	3.9	54
168	Increasing Age Alters Transbilayer Fluidity and Cholesterol Asymmetry in Synaptic Plasma Membranes of Mice. Journal of Neurochemistry, 1996, 66, 1717-1725.	3.9	140
169	Sterol carrier protein-2 stimulates intermembrane sterol transfer by direct membrane interaction. Chemistry and Physics of Lipids, 1995, 76, 73-84.	3.2	52
170	Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells. Lipids, 1995, 30, 907-910.	1.7	122
171	Structure and Polarity of Mouse Brain Synaptic Plasma Membrane: Effects of Ethanol in vitro and in vivo. Biochemistry, 1995, 34, 5945-5959.	2.5	27
172	Probing the Ligand Binding Sites of Fatty Acid and Sterol Carrier Proteins: Effects of Ethanol. Biochemistry, 1995, 34, 11919-11927.	2.5	111
173	Cholesterol Esterase: A Cholesterol Transfer Protein. Biochemistry, 1995, 34, 3942-3947.	2.5	53
174	Cholesterol domains in biological membranes. Molecular Membrane Biology, 1995, 12, 113-119.	2.0	121
175	Regulation of Membrane Cholesterol Domains by Sterol Carrier Protein-2. Biochemistry, 1994, 33, 7682-7690.	2.5	48
176	Mechanistic studies of sterol carrier protein-2 effects on L-cell fibroblast plasma membrane sterol domains. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 52-60.	2.6	22
177	Recombinant Liver Fatty Acid Binding Protein Interacts with Fatty Acyl-Coenzyme A. Biochemistry, 1994, 33, 3327-3334.	2.5	66
178	Erythrocyte membrane lateral sterol domains: A dehydroergosterol fluorescence polarization study. Biochemistry, 1994, 33, 2880-2890.	2.5	28
179	Expression of liver fatty acid binding protein alters plasma membrane lipid composition and structure in transfected L-cell fibroblasts. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 257-265.	2.6	27

180 Membrane Cholesterol and Ethanol: Domains, Kinetics, and Protein Function. , 1993, , 13-32.

#	Article	IF	CITATIONS
181	Sterol domains in phospholipid membranes: dehydroergosterol polarization measures molecular sterol transfer. Journal of Proteomics, 1992, 24, 15-37.	2.4	31
182	Na pump and plasma membrane structure in L-cell fibroblasts expressing rat liver fatty acid binding protein. Archives of Biochemistry and Biophysics, 1992, 298, 35-42.	3.0	42
183	Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Archives of Biochemistry and Biophysics, 1991, 286, 300-309.	3.0	124
184	Transmembrane distribution of sterol in the human erythrocyte. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1066, 183-192.	2.6	123
185	Membrane Cholesterol Dynamics: Cholesterol Domains and Kinetic Pools. Experimental Biology and Medicine, 1991, 196, 235-252.	2.4	230
186	Intermembrane cholesterol transfer: Role of sterol carrier proteins and phosphatidylserine. Lipids, 1990, 25, 669-674.	1.7	40
187	Role of acidic phospholipids in intermembrane sterol transfer. Chemistry and Physics of Lipids, 1990, 56, 37-47.	3.2	27
188	Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer. Biochemistry, 1990, 29, 4070-4077.	2.5	60
189	Role of polyunsaturated fatty acids and lipid peroxidation in LM fibroblast plasma membrane transbilayer structure. Archives of Biochemistry and Biophysics, 1990, 276, 55-64.	3.0	22
190	Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1025, 243-246.	2.6	80
191	Acute and Chronic Effects of Ethanol on Transbilayer Membrane Domains. Journal of Neurochemistry, 1989, 52, 1925-1930.	3.9	65
192	Interaction of sphingomyelins and phosphatidylcholines with fluorescent dehydroergosterol. Biochemistry, 1989, 28, 5992-6000.	2.5	39
193	Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles. Biophysical Chemistry, 1988, 32, 57-72.	2.8	57
194	Time-resolved fluorescence investigation of membrane cholesterol heterogeneity and exchange. Biochemistry, 1988, 27, 7740-7749.	2.5	64
195	A fluorescence and radiolabel study of sterol exchange between membranes. Biochimica Et Biophysica Acta - Biomembranes, 1988, 943, 511-521.	2.6	58
196	Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochimica Et Biophysica Acta - Biomembranes, 1988, 946, 85-94.	2.6	80
197	Polyunsaturated fatty acids alter sterol transbilayer domains in LM fibroblast plasma membrane. FEBS Letters, 1988, 229, 188-192.	2.8	44
198	Cholestatrienol Time Resolved Fluorescence In Phosphatidylcholine Bilayers. Proceedings of SPIE, 1988, , .	0.8	4

12

#	Article	IF	CITATIONS
199	The influence of dolichols on fluidity of mouse synaptic plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1987, 902, 385-393.	2.6	24
200	Charged anesthetics selectively alter plasma membrane order. Biochemistry, 1987, 26, 2828-2835.	2.5	59
201	A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry, 1987, 26, 2441-2448.	2.5	100
202	Plasma membrane lipid composition modulates action of anesthetics. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 53-61.	2.6	20
203	Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 289-301.	2.6	30
204	Structure and dynamic properties of dehydroergosterol, 13-113-113-1. Journal of Biological Physics, 1985, 13, 13-24.	1.5	50
205	Fluorescence of .DELTA.5,7,9(11),22-ergostatetraen-3.betaol in micelles, sterol carrier protein complexes, and plasma membranes. Biochemistry, 1985, 24, 3322-3331.	2.5	76
206	Fluorescence Probes Unravel Asymmetric Structure of Membranes. Sub-Cellular Biochemistry, 1985, 11, 51-101.	2.4	25
207	Membrane Anomalies in Huntington's Disease Fibroblasts. Journal of Neurochemistry, 1984, 43, 526-539.	3.9	16
208	Sex and age alter plasma membranes of cultured fibroblasts. FEBS Journal, 1984, 142, 183-191.	0.2	15
209	Δ5,7,9(11)-cholestatrien-3β-ol: A fluorescent cholesterol analogue. Chemistry and Physics of Lipids, 1984, 36, 1-14.	3.2	94
210	Role of membrane lipid asymmetry in aging. Neurobiology of Aging, 1984, 5, 323-333.	3.1	132
211	Age-related alterations in cultured human fibroblast membrane structure and function. Mechanisms of Ageing and Development, 1984, 25, 365-389.	4.6	42
212	Lipid Domains in Plasma Membrances from Rat Liver. FEBS Journal, 1983, 132, 509-516.	0.2	45
213	Calcium Modulates Fatty Acid Dynamics in Rat Liver Plasma Membranes. FEBS Journal, 1983, 132, 517-524.	0.2	19
214	Measurement of phagocytosis usinf fluorescent latex beads. Journal of Proteomics, 1983, 8, 15-27.	2.4	46
215	LM fibroblast plasma membrane subfractionation by affinity chromatography on Con A-sepharose. Biochimica Et Biophysica Acta - Biomembranes, 1982, 690, 231-242.	2.6	18
216	Asymmetric Transbilayer Distribution of Sterol across Plasma Membranes Determined by Fluorescence Quenching of Dehydroergosterol. FEBS Journal, 1982, 122, 649-661.	0.2	105

#	Article	IF	CITATIONS
217	Use of a flourescent sterol to probe the transbilayer distribution of sterols in biological membranes. FEBS Letters, 1981, 135, 127-130.	2.8	48
218	Phase behavior of triolein and tripalmitin detected by differential scanning calorimetry. Lipids, 1981, 16, 805-809.	1.7	14
219	Differences in fluidity between bilayer halves of plasma cell membranes (reply). Nature, 1980, 287, 256-256.	27.8	12
220	Aminophospholipid Asymmetry in Murine Synaptosomal Plasma Membrane. Journal of Neurochemistry, 1980, 34, 269-277.	3.9	114
221	Fluorescence Probes as Monitors of Surface Membrane Fluidity Gradients in Murine Fibroblasts. FEBS Journal, 1980, 112, 293-307.	0.2	54
222	Differences in fluidity between bilayer halves of tumour cell plasma membranes. Nature, 1978, 276, 528-530.	27.8	51