
## Chinmay M Trivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4092465/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency.<br>Cell Stem Cell, 2011, 8, 376-388.                                                                                                   | 11.1 | 1,121     |
| 2  | Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 2007, 13, 324-331.                                                                                                                    | 30.7 | 433       |
| 3  | Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nature Communications, 2015, 6, 6727.                                                                                                               | 12.8 | 254       |
| 4  | Deletion of GSK-3Î <sup>2</sup> in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. Journal of Clinical Investigation, 2008, 118, 3609-3618.                                                  | 8.2  | 204       |
| 5  | Hopx and Hdac2 Interact to Modulate Gata4 Acetylation and Embryonic Cardiac Myocyte Proliferation.<br>Developmental Cell, 2010, 19, 450-459.                                                                                           | 7.0  | 125       |
| 6  | Transgenic Overexpression of Hdac3 in the Heart Produces Increased Postnatal Cardiac Myocyte<br>Proliferation but Does Not Induce Hypertrophy. Journal of Biological Chemistry, 2008, 283,<br>26484-26489.                             | 3.4  | 100       |
| 7  | Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma<br>Models. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 132-138.                                               | 2.9  | 71        |
| 8  | Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming<br>Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development. Journal of Biological<br>Chemistry, 2015, 290, 27067-27089. | 3.4  | 65        |
| 9  | RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome.<br>Journal of Clinical Investigation, 2018, 128, 2064-2075.                                                                          | 8.2  | 64        |
| 10 | Inpp5f Is a Polyphosphoinositide Phosphatase That Regulates Cardiac Hypertrophic Responsiveness.<br>Circulation Research, 2009, 105, 1240-1247.                                                                                        | 4.5  | 59        |
| 11 | Foxp1/2/4-NuRD Interactions Regulate Gene Expression and Epithelial Injury Response in the Lung via Regulation of Interleukin-6. Journal of Biological Chemistry, 2010, 285, 13304-13313.                                              | 3.4  | 57        |
| 12 | Histone Deacetylase 3 Regulates Smooth Muscle Differentiation in Neural Crest Cells and Development of the Cardiac Outflow Tract. Circulation Research, 2011, 109, 1240-1249.                                                          | 4.5  | 55        |
| 13 | Acetylation of a Conserved Lysine Residue in the ATP Binding Pocket of p38 Augments Its Kinase Activity during Hypertrophy of Cardiomyocytes. Molecular and Cellular Biology, 2011, 31, 2349-2363.                                     | 2.3  | 51        |
| 14 | Hdac3 regulates lymphovenous and lymphatic valve formation. Journal of Clinical Investigation, 2017, 127, 4193-4206.                                                                                                                   | 8.2  | 43        |
| 15 | Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium.<br>Atherosclerosis, 2007, 195, e50-e60.                                                                                                       | 0.8  | 39        |
| 16 | Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.<br>Developmental Biology, 2013, 377, 333-344.                                                                                               | 2.0  | 36        |
| 17 | Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-κB) and HOXA9. Gene, 2008, 408, 187-195.                                                                                                                     | 2.2  | 32        |
| 18 | Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis. Human Molecular<br>Genetics, 2014, 23, 3801-3809.                                                                                                       | 2.9  | 29        |

CHINMAY M TRIVEDI

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Homeodomain Only Protein X is down-regulated in human heart failure. Journal of Molecular and<br>Cellular Cardiology, 2011, 50, 1056-1058.                                                                            | 1.9  | 21        |
| 20 | Establishment and maintenance of blood–lymph separation. Cellular and Molecular Life Sciences, 2019, 76, 1865-1876.                                                                                                   | 5.4  | 16        |
| 21 | Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis. Developmental Dynamics, 2017, 246, 1015-1026.                           | 1.8  | 13        |
| 22 | Vascular and Lymphatic Malformations: Perspectives From Human and Vertebrate Studies. Circulation Research, 2021, 129, 131-135.                                                                                       | 4.5  | 11        |
| 23 | KRAS or BRAF mutations cause hepatic vascular cavernomas treatable with MAP2K–MAPK1 inhibition.<br>Journal of Experimental Medicine, 2020, 217, .                                                                     | 8.5  | 10        |
| 24 | Histone deacetylases 1 and 2 silence cryptic transcription to promote mitochondrial function during cardiogenesis. Science Advances, 2020, 6, eaax5150.                                                               | 10.3 | 7         |
| 25 | Targeted deletion of Tsc1 causes fatal cardiomyocyte hyperplasia independently of afterload.<br>Cardiovascular Pathology, 2015, 24, 80-93.                                                                            | 1.6  | 6         |
| 26 | Sustained Activation of Endothelial YAP1 Causes Epithelioid Hemangioendothelioma. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2021, 41, 2233-2235.                                                         | 2.4  | 5         |
| 27 | Heart-Healthy Hypertrophy. Cell Metabolism, 2011, 13, 3-4.                                                                                                                                                            | 16.2 | 4         |
| 28 | TIP55, a splice isoform of the KAT5 acetyltransferase, is essential for developmental gene regulation and organogenesis. Scientific Reports, 2018, 8, 14908.                                                          | 3.3  | 3         |
| 29 | Super Enhancers. Circulation Research, 2020, 127, 1156-1158.                                                                                                                                                          | 4.5  | 3         |
| 30 | N-Acetyl Transferases. Circulation Research, 2021, 128, 1170-1172.                                                                                                                                                    | 4.5  | 1         |
| 31 | The Adverse Vascular Effects of E-Cigarettes. Journal of the American College of Cardiology, 2019, 73, 2738-2739.                                                                                                     | 2.8  | 0         |
| 32 | Extracardiac Progenitors: Moving Beyond the First and Second Heart Field. Circulation Research, 2021, 129, 488-490.                                                                                                   | 4.5  | 0         |
| 33 | Response by Jung et al to Letter Regarding Article, "Sustained Activation of Endothelial YAP1 Causes<br>Epithelioid Hemangioendothelioma― Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41,<br>e493-e495. | 2.4  | 0         |
| 34 | Human 3p14.3: A Regulatory Region in Transposition of the Great Arteries. Circulation Research, 2022, 130, 181-183.                                                                                                   | 4.5  | 0         |
| 35 | Cation Channelopathies: Novel Insights into Generalized Lymphatic Dysplasia. Circulation Research, 2022, 131, 130-132.                                                                                                | 4.5  | 0         |