
Charles Boone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4091792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retention of duplicated genes in evolution. Trends in Genetics, 2022, 38, 59-72.	2.9	76
2	Clionamines stimulate autophagy, inhibit Mycobacterium tuberculosis survival in macrophages, and target Pik1. Cell Chemical Biology, 2022, 29, 870-882.e11.	2.5	7
3	Jerveratrum-Type Steroidal Alkaloids Inhibit β-1,6-Glucan Biosynthesis in Fungal Cell Walls. Microbiology Spectrum, 2022, 10, e0087321.	1.2	9
4	Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	1
5	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	5.8	21
6	Context-dependent regulation of ferroptosis sensitivity. Cell Chemical Biology, 2022, 29, 1409-1418.e6.	2.5	42
7	Phenylboronic Ester-Activated Aryl Iodide-Selective Buchwald–Hartwig-Type Amination toward Bioactivity Assay. ACS Omega, 2022, 7, 24184-24189.	1.6	1
8	Ï"-SGA: synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast. Nature Protocols, 2021, 16, 1219-1250.	5.5	6
9	Trigenic Synthetic Genetic Array (Ï"-SGA) Technique for Complex Interaction Analysis. Methods in Molecular Biology, 2021, 2212, 377-400.	0.4	2
10	Reduced gene dosage of histone H4 prevents CENP-A mislocalization and chromosomal instability in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 218, .	1.2	8
11	Genome-wide screening of genes associated with momilactone B sensitivity in the fission yeast <i>Schizosaccharomyces pombe</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
12	Environmental robustness of the global yeast genetic interaction network. Science, 2021, 372, .	6.0	40
13	A method for benchmarking genetic screens reveals a predominant mitochondrial bias. Molecular Systems Biology, 2021, 17, e10013.	3.2	8
14	Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations. Cell Systems, 2021, 12, 608-621.	2.9	15
15	A genomeâ€scale yeast library with inducible expression of individual genes. Molecular Systems Biology, 2021, 17, e10207.	3.2	37
16	The amino acid substitution affects cellular response to mistranslation. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	10
17	Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Molecular Cell, 2021, 81, 2460-2476.e11.	4.5	39
18	Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical–Genetic Interactions. Journal of Chemical Information and Modeling, 2021, 61, 4156-4172.	2.5	11

#	Article	IF	CITATIONS
19	Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nature Communications, 2021, 12, 6497.	5.8	33
20	TheCellVision.org: A Database for Visualizing and Mining High-Content Cell Imaging Projects. G3: Genes, Genomes, Genetics, 2020, 10, 3969-3976.	0.8	4
21	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
22	Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nature Metabolism, 2020, 2, 499-513.	5.1	72
23	Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science, 2020, 368, .	6.0	79
24	Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast. PLoS Genetics, 2020, 16, e1008597.	1.5	28
25	Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2057-2068.	0.8	11
26	Systematic genetics and singleâ€cell imaging reveal widespread morphological pleiotropy and cellâ€ŧoâ€cell variability. Molecular Systems Biology, 2020, 16, e9243.	3.2	37
27	Systematic analysis of bypass suppression of essential genes. Molecular Systems Biology, 2020, 16, e9828.	3.2	45
28	Genetic profiling of protein burden and nuclear export overload. ELife, 2020, 9, .	2.8	8
29	Decyl Gallate as a Possible Inhibitor of N-Glycosylation Process in <i>Paracoccidioides lutzii</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	3
30	Discovering genetic interactions bridging pathways in genome-wide association studies. Nature Communications, 2019, 10, 4274.	5.8	52
31	Integrating yeast chemical genomics and mammalian cell pathway analysis. Acta Pharmacologica Sinica, 2019, 40, 1245-1255.	2.8	2
32	Global Genetic Networks and the Genotype-to-Phenotype Relationship. Cell, 2019, 177, 85-100.	13.5	170
33	Genetic interaction networks in cancer cells. Current Opinion in Genetics and Development, 2019, 54, 64-72.	1.5	28
34	Yeast Two-Hybrid Analysis for Ubiquitin Variant Inhibitors of Human Deubiquitinases. Journal of Molecular Biology, 2019, 431, 1160-1171.	2.0	6
35	Complex modifier landscape underlying genetic background effects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5045-5054.	3.3	41
36	Using BEAN-counter to quantify genetic interactions from multiplexed barcode sequencing experiments. Nature Protocols, 2019, 14, 415-440.	5.5	16

#	Article	IF	CITATIONS
37	Systematic analysis of complex genetic interactions. Science, 2018, 360, .	6.0	201
38	MOSAIC: a chemical-genetic interaction data repository and web resource for exploring chemical modes of action. Bioinformatics, 2018, 34, 1251-1252.	1.8	14
39	Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions. PLoS Computational Biology, 2018, 14, e1006532.	1.5	13
40	Integrating genetic and protein–protein interaction networks maps a functional wiring diagram of a cell. Current Opinion in Microbiology, 2018, 45, 170-179.	2.3	31
41	A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics, 2018, 210, 203-218.	1.2	20
42	The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. Journal of Cell Biology, 2018, 217, 2445-2462.	2.3	9
43	Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genetics, 2018, 14, e1007319.	1.5	37
44	Genetic Network Complexity Shapes Background-Dependent Phenotypic Expression. Trends in Genetics, 2018, 34, 578-586.	2.9	35
45	Automated analysis of highâ€content microscopy data with deep learning. Molecular Systems Biology, 2017, 13, 924.	3.2	220
46	TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network. G3: Genes, Genomes, Genetics, 2017, 7, 1539-1549.	0.8	114
47	Machine learning and computer vision approaches for phenotypic profiling. Journal of Cell Biology, 2017, 216, 65-71.	2.3	130
48	Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping. Cell Reports, 2017, 20, 2735-2748.	2.9	47
49	The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nature Communications, 2017, 8, 499.	5.8	49
50	Functional annotation of chemical libraries across diverse biological processes. Nature Chemical Biology, 2017, 13, 982-993.	3.9	76
51	Mapping a diversity of genetic interactions in yeast. Current Opinion in Systems Biology, 2017, 6, 14-21.	1.3	20
52	Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. G3: Genes, Genomes, Genetics, 2017, 7, 2719-2727.	0.8	417
53	Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genetics, 2017, 13, e1006779.	1.5	30
54	Pathway-based discovery of genetic interactions in breast cancer. PLoS Genetics, 2017, 13, e1006973.	1.5	62

#	Article	IF	CITATIONS
55	Mechanisms of suppression: The wiring of genetic resilience. BioEssays, 2017, 39, 1700042.	1.2	31
56	Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathogens, 2016, 12, e1005609.	2.1	51
57	Synthetic Genetic Array Analysis. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot088807.	0.2	27
58	Synthetic Genetic Arrays: Automation of Yeast Genetics. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086652.	0.2	11
59	An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Research, 2016, 26, 670-680.	2.4	116
60	High-Content Screening for Quantitative Cell Biology. Trends in Cell Biology, 2016, 26, 598-611.	3.6	214
61	Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Systems, 2016, 3, 264-277.e10.	2.9	26
62	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	6.0	979
63	Exploring genetic suppression interactions on a global scale. Science, 2016, 354, .	6.0	157
64	Chromosome-Specific and Global Effects of Aneuploidy in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 202, 1395-1409.	1.2	37
65	Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 2016, 164, 805-817.	13.5	479
66	Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genetics, 2015, 11, e1005659.	1.5	24
67	Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis. Cell, 2015, 161, 1413-1424.	13.5	254
68	Leveraging DNA Damage Response Signaling to Identify Yeast Genes Controlling Genome Stability. G3: Genes, Genomes, Genetics, 2015, 5, 997-1006.	0.8	25
69	Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1490-7.	3.3	91
70	Construction of Multifragment Plasmids by Homologous Recombination in Yeast. Cold Spring Harbor Protocols, 2015, 2015, pdb.top084111.	0.2	4
71	Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot085100.	0.2	22
72	The indispensable genome. Science, 2015, 350, 1028-1029.	6.0	13

#	Article	IF	CITATIONS
73	CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1223-1232.	0.8	69
74	Heritability and genetic basis of protein level variation in an outbred population. Genome Research, 2014, 24, 1363-1370.	2.4	51
75	Yeast Systems Biology: Our Best Shot at Modeling a Cell. Genetics, 2014, 198, 435-437.	1.2	23
76	Protein quality control at the inner nuclear membrane. Nature, 2014, 516, 410-413.	13.7	188
77	Genome-wide Analysis Reveals Novel and Discrete Functions for Tubulin Carboxy-Terminal Tails. Current Biology, 2014, 24, 1295-1303.	1.8	26
78	Synthetic Genetic Array Analysis for Global Mapping of Genetic Networks in Yeast. Methods in Molecular Biology, 2014, 1205, 143-168.	0.4	30
79	Mapping the functional yeast ABC transporter interactome. Nature Chemical Biology, 2013, 9, 565-572.	3.9	93
80	Focus on chemical biology in Asia. Molecular BioSystems, 2013, 9, 825.	2.9	0
81	Simplifying the author and reader experience. Molecular BioSystems, 2013, 9, 9-9.	2.9	Ο
82	Systems-level antimicrobial drug and drug synergy discovery. Nature Chemical Biology, 2013, 9, 222-231.	3.9	146
83	SH3 interactome conserves general function over specific form. Molecular Systems Biology, 2013, 9, 652.	3.2	61
84	Genetic Interaction Networks: Toward an Understanding of Heritability. Annual Review of Genomics and Human Genetics, 2013, 14, 111-133.	2.5	105
85	Actin Filament Elongation in Arp2/3-Derived Networks Is Controlled by Three Distinct Mechanisms. Developmental Cell, 2013, 24, 182-195.	3.1	41
86	A Comparative Genomic Approach for Identifying Synthetic Lethal Interactions in Human Cancer. Cancer Research, 2013, 73, 6128-6136.	0.4	56
87	A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Molecular Systems Biology, 2013, 9, 696.	3.2	90
88	Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. Journal of Cell Biology, 2013, 201, 145-163.	2.3	58
89	Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS ONE, 2013, 8, e66379.	1.1	21
90	Network Evolution: Rewiring and Signatures of Conservation in Signaling. PLoS Computational Biology, 2012, 8, e1002411.	1.5	30

#	Article	IF	CITATIONS
91	PhenoM: a database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Research, 2012, 40, D687-D694.	6.5	13
92	Regulatory circuitry governing morphogenesis in <i>Saccharomyces cerevisiae</i> and <i>Candida albicans</i> . Cell Cycle, 2012, 11, 4294-4295.	1.3	23
93	Functional Analysis With a Barcoder Yeast Gene Overexpression System. G3: Genes, Genomes, Genetics, 2012, 2, 1279-1289.	0.8	72
94	Genetic Variation in <i>Saccharomyces cerevisiae</i> : Circuit Diversification in a Signal Transduction Network. Genetics, 2012, 192, 1523-1532.	1.2	36
95	Conserved rules govern genetic interaction degree across species. Genome Biology, 2012, 13, R57.	13.9	48
96	Dissecting DNA damage response pathways by analysing protein localization and abundance changesAduring DNA replication stress. Nature Cell Biology, 2012, 14, 966-976.	4.6	431
97	Global Gene Deletion Analysis Exploring Yeast Filamentous Growth. Science, 2012, 337, 1353-1356.	6.0	186
98	Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Research, 2012, 22, 791-801.	2.4	65
99	Chemical-genomic profiling: Systematic analysis of the cellular targets of bioactive molecules. Bioorganic and Medicinal Chemistry, 2012, 20, 1952-1960.	1.4	36
100	Microarray-based target identification using drug hypersensitive fission yeast expressing ORFeome. Molecular BioSystems, 2011, 7, 1463.	2.9	21
101	Padanamides A and B, Highly Modified Linear Tetrapeptides Produced in Culture by a <i>Streptomyces</i> sp. Isolated from a Marine Sediment. Organic Letters, 2011, 13, 3936-3939.	2.4	46
102	From chemical genomics to personalized medicine—tackling the genotype to phenotype problem. Molecular BioSystems, 2011, 7, 13-13.	2.9	0
103	Systematic exploration of synergistic drug pairs. Molecular Systems Biology, 2011, 7, 544.	3.2	284
104	The TFIIH Subunit Tfb3 Regulates Cullin Neddylation. Molecular Cell, 2011, 43, 488-495.	4.5	39
105	An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature Genetics, 2011, 43, 656-662.	9.4	194
106	The future of model organisms in human disease research. Nature Reviews Genetics, 2011, 12, 575-582.	7.7	66
107	Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nature Biotechnology, 2011, 29, 361-367.	9.4	352
108	Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nature Biotechnology, 2011, 29, 505-511.	9.4	90

#	Article	IF	CITATIONS
109	New azole antifungal agents with novel modes of action: Synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. European Journal of Medicinal Chemistry, 2011, 46, 4117-4124.	2.6	68
110	Combining functional genomics and chemical biology to identify targets of bioactive compounds. Current Opinion in Chemical Biology, 2011, 15, 66-78.	2.8	72
111	Charting the genetic interaction map of a cell. Current Opinion in Biotechnology, 2011, 22, 66-74.	3.3	103
112	Nutrients and the Pkh1/2 and Pkc1 Protein Kinases Control mRNA Decay and P-body Assembly in Yeast. Journal of Biological Chemistry, 2011, 286, 8759-8770.	1.6	27
113	Histone modifications influence mediator interactions with chromatin. Nucleic Acids Research, 2011, 39, 8342-8354.	6.5	39
114	Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes and Development, 2011, 25, 917-929.	2.7	247
115	Ubiquitin Ligase Ufd2 Is Required for Efficient Degradation of Mps1 Kinase. Journal of Biological Chemistry, 2011, 286, 43660-43667.	1.6	22
116	An "Exacerbate-reverse―Strategy in Yeast Identifies Histone Deacetylase Inhibition as a Correction for Cholesterol and Sphingolipid Transport Defects in Human Niemann-Pick Type C Disease. Journal of Biological Chemistry, 2011, 286, 23842-23851.	1.6	67
117	Drug-Sensitive DNA Polymerase δ Reveals a Role for Mismatch Repair in Checkpoint Activation in Yeast. Genetics, 2011, 189, 1211-1224.	1.2	9
118	Putting genetic interactions in context through a global modular decomposition. Genome Research, 2011, 21, 1375-1387.	2.4	61
119	Protein Complexes are Central in the Yeast Genetic Landscape. PLoS Computational Biology, 2011, 7, e1001092.	1.5	57
120	The Genetic Landscape of a Cell. Science, 2010, 327, 425-431.	6.0	1,937
121	Reconstitution and Protein Composition Analysis of Endocytic Actin Patches. Current Biology, 2010, 20, 1890-1899.	1.8	59
122	The Awesome Power of Synergy from Chemical-Chemical Profiling. Chemistry and Biology, 2010, 17, 789-790.	6.2	1
123	Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nature Methods, 2010, 7, 1017-1024.	9.0	319
124	Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. Journal of Cell Biology, 2010, 188, 69-81.	2.3	100
125	The DNA Damage Response Pathway Contributes to the Stability of Chromosome III Derivatives Lacking Efficient Replicators. PLoS Genetics, 2010, 6, e1001227.	1.5	29
126	Genetic interactions reveal the evolutionary trajectories of duplicate genes. Molecular Systems Biology, 2010, 6, 429.	3.2	97

#	Article	IF	CITATIONS
127	Synthetic Genetic Array (SGA) Analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods in Enzymology, 2010, 470, 145-179.	0.4	175
128	Genotype to Phenotype: A Complex Problem. Science, 2010, 328, 469-469.	6.0	358
129	Identification of Saccharomyces cerevisiae Spindle Pole Body Remodeling Factors. PLoS ONE, 2010, 5, e15426.	1.1	12
130	Shifted Transversal Design smart-pooling for high coverage interactome mapping. Genome Research, 2009, 19, 1262-1269.	2.4	36
131	Exploring the conservation of synthetic lethal genetic interaction networks. Communicative and Integrative Biology, 2009, 2, 78-81.	0.6	22
132	Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins. PLoS Biology, 2009, 7, e1000218.	2.6	172
133	Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae. Nucleic Acids Research, 2009, 37, 298-308.	6.5	63
134	A picture is worth a thousand words: Genomics to phenomics in the yeast <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2009, 583, 1656-1661.	1.3	32
135	The yeast Shu complex couples errorâ€free postâ€replication repair to homologous recombination. Molecular Microbiology, 2009, 73, 89-102.	1.2	88
136	A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology, 2009, 27, 369-377.	9.4	254
137	An empirical framework for binary interactome mapping. Nature Methods, 2009, 6, 83-90.	9.0	800
138	You too can play with an edge. Nature Methods, 2009, 6, 797-798.	9.0	3
139	Global Map of SUMO Function Revealed by Protein-Protein Interaction and Genetic Networks. Molecular Cell, 2009, 33, 124-135.	4.5	109
140	Systematic Mapping of Genetic Interaction Networks. Annual Review of Genetics, 2009, 43, 601-625.	3.2	250
141	Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature, 2009, 458, 228-232.	13.7	245
142	ITSNâ€1 Controls Vesicle Recycling at the Neuromuscular Junction and Functions in Parallel with DABâ€1. Traffic, 2008, 9, 742-754.	1.3	43
143	The interaction network of the chaperonin CCT. EMBO Journal, 2008, 27, 1827-1839.	3.5	182
144	Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nature Methods, 2008, 5, 719-725.	9.0	99

#	Article	IF	CITATIONS
145	eSGA: E. coli synthetic genetic array analysis. Nature Methods, 2008, 5, 789-795.	9.0	231
146	Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16653-16658.	3.3	165
147	Genetic and Biochemical Analysis of Yeast and Human Cap Trimethylguanosine Synthase. Journal of Biological Chemistry, 2008, 283, 31706-31718.	1.6	65
148	The Saccharomyces cerevisiae Homolog of p24 Is Essential for Maintaining the Association of p150Glued With the Dynactin Complex. Genetics, 2008, 178, 703-709.	1.2	17
149	A Specificity Map for the PDZ Domain Family. PLoS Biology, 2008, 6, e239.	2.6	410
150	The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Research, 2008, 18, 1092-1099.	2.4	105
151	Genetic Interactions of MAF1 Identify a Role for Med20 in Transcriptional Repression of Ribosomal Protein Genes. PLoS Genetics, 2008, 4, e1000112.	1.5	12
152	Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. Journal of Cell Biology, 2008, 180, 563-578.	2.3	159
153	Chemical–Genetic Profiling of Imidazo[1,2-a]pyridines and -Pyrimidines Reveals Target Pathways Conserved between Yeast and Human Cells. PLoS Genetics, 2008, 4, e1000284.	1.5	37
154	Ybp2 Associates with the Central Kinetochore of Saccharomyces cerevisiae and Mediates Proper Mitotic Progression. PLoS ONE, 2008, 3, e1617.	1.1	13
155	Identification of a Novel Lysophospholipid Acyltransferase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 30562-30569.	1.6	103
156	Inorganic Phosphate Deprivation Causes tRNA Nuclear Accumulation via Retrograde Transport in Saccharomyces cerevisiae. Genetics, 2007, 176, 841-852.	1.2	43
157	The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. Journal of Cell Biology, 2007, 178, 1265-1278.	2.3	112
158	Genetic Dissection of Parallel Sister-Chromatid Cohesion Pathways. Genetics, 2007, 176, 1417-1429.	1.2	102
159	The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genetics, 2007, 39, 486-495.	9.4	290
160	Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nature Protocols, 2007, 2, 1368-1386.	5.5	174
161	Exploring genetic interactions and networks with yeast. Nature Reviews Genetics, 2007, 8, 437-449.	7.7	541
162	Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007, 446, 806-810.	13.7	806

#	Article	IF	CITATIONS
163	16 High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in. Methods in Microbiology, 2007, 36, 369-707.	0.4	87
164	Genomic Approaches for Identifying DNA Damage Response Pathways in S. cerevisiae. Methods in Enzymology, 2006, 409, 213-235.	0.4	5
165	Identifying transcription factor functions and targets by phenotypic activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12045-12050.	3.3	156
166	Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions. Cell, 2006, 124, 133-145.	13.5	246
167	Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast. Cell, 2006, 126, 611-625.	13.5	447
168	Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 2006, 21, 319-330.	4.5	618
169	From worm genetic networks to complex human diseases. Nature Genetics, 2006, 38, 862-863.	9.4	13
170	Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nature Reviews Genetics, 2006, 7, 929-939.	7.7	115
171	Genetic and molecular interactions of the Erv41p-Erv46p complex involved in transport between the endoplasmic reticulum and Golgi complex. Journal of Cell Science, 2006, 119, 4730-4740.	1.2	19
172	The Phosphatidylinositol 4,5-Biphosphate and TORC2 Binding Proteins Slm1 and Slm2 Function in Sphingolipid Regulation. Molecular and Cellular Biology, 2006, 26, 5861-5875.	1.1	125
173	The synthetic genetic interaction spectrum of essential genes. Nature Genetics, 2005, 37, 1147-1152.	9.4	202
174	RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO Journal, 2005, 24, 2024-2033.	3.5	150
175	A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability. PLoS Genetics, 2005, 1, e61.	1.5	85
176	Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13956-13961.	3.3	126
177	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	6.0	6
178	Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell, 2005, 120, 715-727.	13.5	729
179	Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile. Cell, 2005, 123, 507-519.	13.5	804
180	Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex. Cell, 2005, 123, 593-605.	13.5	712

#	Article	IF	CITATIONS
181	Fus1p Interacts With Components of the Hog1p Mitogen-Activated Protein Kinase and Cdc42p Morphogenesis Signaling Pathways to Control Cell Fusion During Yeast Mating. Genetics, 2004, 166, 67-77.	1.2	60
182	The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. Journal of Cell Biology, 2004, 167, 281-292.	2.3	87
183	Mrc1 Is Required for Sister Chromatid Cohesion To Aid in Recombination Repair of Spontaneous Damage. Molecular and Cellular Biology, 2004, 24, 7082-7090.	1.1	91
184	The Origin Recognition Complex Links Replication, Sister Chromatid Cohesion and Transcriptional Silencing in Saccharomyces cerevisiae. Genetics, 2004, 167, 579-591.	1.2	103
185	Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 2004, 22, 62-69.	9.4	584
186	Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nature Cell Biology, 2004, 6, 414-419.	4.6	168
187	Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO Journal, 2004, 23, 3747-3757.	3.5	124
188	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
189	Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15682-15687.	3.3	225
190	Exploration of Essential Gene Functions via Titratable Promoter Alleles. Cell, 2004, 118, 31-44.	13.5	538
191	GenomicsBeyond the genome: from genomics to systems biology. Current Opinion in Microbiology, 2004, 7, 489-491.	2.3	5
192	Old Drugs, New Tricks. Cell, 2004, 116, 5-7.	13.5	28
193	Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO Journal, 2003, 22, 4304-4313.	3.5	148
194	Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends in Cell Biology, 2003, 13, 344-356.	3.6	126
195	Formin Leaky Cap Allows Elongation in the Presence of Tight Capping Proteins. Current Biology, 2003, 13, 1820-1823.	1.8	244
196	Functional genomics of intracellular peptide recognition domains with combinatorial biology methods. Current Opinion in Chemical Biology, 2003, 7, 97-102.	2.8	21
197	Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Molecular Microbiology, 2003, 50, 167-181.	1.2	461
198	Playing tag with the yeast proteome. Nature Biotechnology, 2003, 21, 1297-1299.	9.4	5

#	Article	IF	CITATIONS
199	ORFeomics: correcting the wiggle in worm genes. Nature Genetics, 2003, 34, 8-9.	9.4	4
200	A Conserved RING Finger Protein Required for Histone H2B Monoubiquitination and Cell Size Control. Molecular Cell, 2003, 11, 261-266.	4.5	413
201	Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II. Molecular and Cellular Biology, 2003, 23, 4207-4218.	1.1	600
202	Formins: signaling effectors for assembly and polarization of actin filaments. Journal of Cell Science, 2003, 116, 2603-2611.	1.2	249
203	Mode of Selection and Experimental Evolution of Antifungal Drug Resistance in <i>Saccharomyces cerevisiae</i> . Genetics, 2003, 163, 1287-1298.	1.2	134
204	Yeast genomics and proteomics in drug discovery and target validation. Progress in Cell Cycle Research, 2003, 5, 159-66.	0.9	21
205	A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16934-16939.	3.3	258
206	A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules. Science, 2002, 295, 321-324.	6.0	668
207	Role of Formins in Actin Assembly: Nucleation and Barbed-End Association. Science, 2002, 297, 612-615.	6.0	664
208	Approaches to Analyze Protein Interactions. Scientific World Journal, The, 2002, 2, 93-94.	0.8	0
209	Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biology, 2002, 4, 32-41.	4.6	405
210	High-Resolution Genetic Mapping With Ordered Arrays of <i>Saccharomyces cerevisiae</i> Deletion Mutants. Genetics, 2002, 162, 1091-1099.	1.2	98
211	Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 2001, 294, 2364-2368.	6.0	1,946
212	A protein interaction map for cell polarity development. Journal of Cell Biology, 2001, 154, 549-576.	2.3	294
213	A Role for Myosin-I in Actin Assembly through Interactions with Vrp1p, Bee1p, and the Arp2/3 Complex. Journal of Cell Biology, 2000, 148, 353-362.	2.3	227
214	Signaling and Circuitry of Multiple MAPK Pathways Revealed by a Matrix of Global Gene Expression Profiles. Science, 2000, 287, 873-880.	6.0	835
215	Control of Mitotic Spindle Position by the Saccharomyces cerevisiae Formin Bni1p. Journal of Cell Biology, 1999, 144, 947-961.	2.3	150
216	The Src Homology Domain 3 (SH3) of a Yeast Type I Myosin, Myo5p, Binds to Verprolin and Is Required for Targeting to Sites of Actin Polarization. Journal of Cell Biology, 1998, 141, 1357-1370.	2.3	129

#	Article	IF	CITATIONS
217	Bni1p, a Yeast Formin Linking Cdc42p and the Actin Cytoskeleton During Polarized Morphogenesis. Science, 1997, 276, 118-122.	6.0	608
218	Genetic Analysis of Default Mating Behavior in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 146, 39-55.	1.2	57
219	Identification of a tRNAGInochre suppressor inSaccharomyces cerevisiae. Nucleic Acids Research, 1992, 20, 4661-4661.	6.5	7
220	Yeast killer toxin: Site-directed mutations implicate the precursor protein as the immunity component. Cell, 1986, 46, 105-113.	13.5	95