David S Pisetsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4090302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-RNP antibodies are associated with the interferon gene signature but not decreased complement levels in SLE. Annals of the Rheumatic Diseases, 2022, 81, 632-643.	0.9	17
2	The use of patient-reported outcome measures to classify type 1 and 2 systemic lupus erythematosus activity. Lupus, 2022, 31, 697-705.	1.6	4
3	In the shadow of antibodies: how T cells defend against COVID-19. Annals of the Rheumatic Diseases, 2022, 81, 757-759.	0.9	2
4	The Interaction of Anti-DNA Antibodies with DNA: Evidence for Unconventional Binding Mechanisms. International Journal of Molecular Sciences, 2022, 23, 5227.	4.1	2
5	Role of ANA testing in the classification of patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2021, 80, e124-e124.	0.9	11
6	The role of TASL in the pathogenesis of SLE: X marks the spot. Annals of the Rheumatic Diseases, 2021, 80, 6-7.	0.9	3
7	Using Clinical Characteristics and Patientâ€Reported Outcome Measures to Categorize Systemic Lupus Erythematosus Subtypes. Arthritis Care and Research, 2021, 73, 386-393.	3.4	20
8	The Categorization of Pain in Systemic Lupus Erythematosus. Rheumatic Disease Clinics of North America, 2021, 47, 215-228.	1.9	8
9	Are DNA–HLA class II interactions the missing link in SLE?. Nature Reviews Rheumatology, 2021, 17, 647-648.	8.0	Ο
10	Editorial: The Role of Nuclear Molecules in the Pathogenesis of Autoimmune Disease. Frontiers in Immunology, 2021, 12, 737923.	4.8	0
11	The Binding of Monoclonal and Polyclonal Anti-Z-DNA Antibodies to DNA of Various Species Origin. International Journal of Molecular Sciences, 2021, 22, 8931.	4.1	4
12	Some disease-modifying osteoarthritis drugs make small improvements in knee and hip osteoarthritis. Annals of Internal Medicine, 2021, 174, JC104.	3.9	3
13	The interaction of anti-DNA antibodies with DNA antigen: Evidence for hysteresis for high avidity binding. Clinical Immunology, 2021, 231, 108848.	3.2	6
14	Reply to: Diagnostic role of anti-dsDNA antibodies: do not forget autoimmune hepatitis. Nature Reviews Rheumatology, 2021, 17, 245-245.	8.0	1
15	The Binding Mechanisms of Antibodies to DNA from Healthy Subjects and Patients with Systemic Lupus Erythematosus: The Role of Monogamous Bivalency and Fc Dependence. ImmunoHorizons, 2021, 5, 792-801.	1.8	1
16	1707â€Anti-RNP antibodies are associated with the interferon gene signature but not complement activation in SLE. , 2021, , .		0
17	1109â€Clinical and laboratory manifestations of SLE patients with elevated cell-bound complement activation products. , 2021, , .		0
18	1113â€Patient and Physician Perspectives of Lupus Flare. , 2021, , .		0

#	Article	IF	CITATIONS
19	1001â€Longitudinal changes in type 2 SLE activity. , 2021, , .		0
20	Response to: â€~ANA testing in "real lifeâ€â€™ by Infantino <i>etal</i> . Annals of the Rheumatic Diseases, 2020, 79, e4-e4.	0.9	0
21	Response to: "Antinuclear autoantibodies: discordance among four different assays―by Pacheco <i>et al</i> . Annals of the Rheumatic Diseases, 2020, 79, e7-e7.	0.9	Ο
22	Response to â€~Antinuclear antibodies by indirect immunofluorescence and solid phase assays' by Bossuyt et al. Annals of the Rheumatic Diseases, 2020, 79, e66-e66.	0.9	2
23	Response to: â€ [~] Can solid-phase assays replace immunofluorescence for ANA screening?' by Bizzaro. Annals of the Rheumatic Diseases, 2020, 79, e33-e33.	0.9	0
24	Response to: â€~Comment on editorial â€~Pathogenic effector functions of ACPA: where do we stand'' by Holmdahl. Annals of the Rheumatic Diseases, 2020, 79, e127-e127.	0.9	1
25	Evolving story of autoantibodies in systemic lupus erythematosus. Journal of Autoimmunity, 2020, 110, 102356.	6.5	40
26	DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona. Biointerphases, 2020, 15, 051006.	1.6	17
27	Immune phenotypes in individuals positive for antinuclear antibodies: The impact of race and ethnicity. Journal of Allergy and Clinical Immunology, 2020, 146, 1346-1348.	2.9	3
28	New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nature Reviews Rheumatology, 2020, 16, 565-579.	8.0	145
29	Hopefulness of â€~Hope'. Annals of the Rheumatic Diseases, 2020, 79, 849-850.	0.9	2
30	The basic and translational science year in review: Confucius in the era of Big Data. Seminars in Arthritis and Rheumatism, 2020, 50, 373-379.	3.4	2
31	The binding of SLE autoantibodies to mitochondria. Clinical Immunology, 2020, 212, 108349.	3.2	16
32	Of mice, men and microbes: the impact of the microbiome on immune responses. Annals of the Rheumatic Diseases, 2020, 79, 167-169.	0.9	0
33	Response to: â€~Antinuclear antibody as entry criterion for classification of systemic lupus erythematosus: pitfalls and opportunities' by Bossuyt et al. Annals of the Rheumatic Diseases, 2019, 78, e77-e77.	0.9	1
34	Response to: â€~Pitfalls of antinuclear antibody detection in systemic lupus erythematosus: the positive experience of a national multi-center study' by Pregnalato et al. Annals of the Rheumatic Diseases, 2019, 78, e51-e51.	0.9	0
35	ANA as an entry criterion for the classification of SLE. Autoimmunity Reviews, 2019, 18, 102400.	5.8	48
36	Microparticles in the blood of patients with SLE: Size, content of mitochondria and role in circulating immune complexes. Journal of Autoimmunity, 2019, 102, 142-149.	6.5	38

#	Article	IF	CITATIONS
37	Unexpected link between mitochondrial DNA and T cell help in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2019, 78, e59.1-e59.	0.9	1
38	Pathogenic effector functions of ACPA: Where do we stand?. Annals of the Rheumatic Diseases, 2019, 78, 716-721.	0.9	33
39	Variability in Antinuclear Antibody Testing to Assess Patient Eligibility for Clinical Trials of Novel Treatments for Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 1534-1538.	5.6	15
40	A Holistic Approach to Pain Management in the Rheumatic Diseases. Current Treatment Options in Rheumatology, 2019, 5, 1-10.	1.4	1
41	Mechanisms of immune-related adverse events during the treatment of cancer with immune checkpoint inhibitors. Rheumatology, 2019, 58, vii59-vii67.	1.9	137
42	Lupus Biomarkers. , 2019, , 631-639.		0
43	A Novel System to Categorize the Symptoms of Systemic Lupus Erythematosus. Arthritis Care and Research, 2019, 71, 735-741.	3.4	48
44	Response to: â€~Lack of standardization of ANA and implications for drug development and precision medicine' by Mahler. Annals of the Rheumatic Diseases, 2019, 78, e34-e34.	0.9	2
45	Role of Antinuclear Antibody Determinations in Classification Criteria for Systemic Lupus Erythematosus: Comment on the Article by Leuchten et al. Arthritis Care and Research, 2019, 71, 696-696.	3.4	12
46	Response to: 'Unending story of the indirect immunofluorescence assay on HEp-2 cells: old problems and new solutions?' by Meroni <i>et al</i> . Annals of the Rheumatic Diseases, 2019, 78, e47-e47.	0.9	0
47	Response to: â€~Variation in antinuclear antibody detection by automated indirect immunofluorescence analysis' by van Hoovels <i>et al</i> . Annals of the Rheumatic Diseases, 2019, 78, e49-e49.	0.9	1
48	The central role of nucleic acids in the pathogenesis of systemic lupus erythematosus. F1000Research, 2019, 8, 368.	1.6	18
49	Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Molecular Therapy, 2018, 26, 1020-1031.	8.2	42
50	Assay variation in the detection of antinuclear antibodies in the sera of patients with established SLE. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2017-212599.	0.9	98
51	The release of microparticles and mitochondria from RAW 264.7 murine macrophage cells undergoing necroptotic cell death in vitro. Experimental Cell Research, 2018, 363, 151-159.	2.6	15
52	Effects of immune checkpoint inhibitors on B cells: relationship to immune-related adverse events. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2018-213561.	0.9	7
53	AA-02â€The expression of autoantibodies to mitochondria in the blood of patients with SLE. , 2018, , .		0
54	Role of Epstein-Barr virus infection in SLE: gene-environment interactions at the molecular level. Annals of the Rheumatic Diseases, 2018, 77, 1249-1250.	0.9	14

#	Article	IF	CITATIONS
55	Microparticles as autoantigens in systemic lupus erythematosus. European Journal of Clinical Investigation, 2018, 48, e13010.	3.4	34
56	TLR3 Ligand Poly(I:C) Exerts Distinct Actions in Synovial Fibroblasts When Delivered by Extracellular Vesicles. Frontiers in Immunology, 2018, 9, 28.	4.8	18
57	The SLE-key test serological signature: new insights into the course of lupus. Rheumatology, 2018, 57, 1632-1640.	1.9	9
58	EULAR recommendations for disease management: guidance not guidelines. Annals of the Rheumatic Diseases, 2017, 76, 935-938.	0.9	8
59	New Perspectives in Rheumatology: Biomarkers as Entry Criteria for Clinical Trials of New Therapies for Systemic Lupus Erythematosus: The Example of Antinuclear Antibodies and Antiâ€ĐNA. Arthritis and Rheumatology, 2017, 69, 487-493.	5.6	42
60	Antinuclear antibody testing — misunderstood or misbegotten?. Nature Reviews Rheumatology, 2017, 13, 495-502.	8.0	125
61	The role of microparticles in the pathogenesis of SLE: a new look at an old paradigm. Lupus Science and Medicine, 2017, 4, e000220.	2.7	6
62	Eating Disorders, Autoimmune, and Autoinflammatory Disease. Pediatrics, 2017, 140, .	2.1	79
63	The biological functions of DNA: from the sublime to the slime. Arthritis Research and Therapy, 2017, 19, 275.	3.5	3
64	Advances in the Treatment of Rheumatoid Arthritis. North Carolina Medical Journal, 2017, 78, 337-340.	0.2	29
65	The Role of Microparticles as Biomarkers in the Development of Therapy for Autoimmune Disease. , 2017, , 35-50.		0
66	Pain management in rheumatology research, training, and practice. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 2-7.	0.8	8
67	The role of mitochondria in immune-mediated disease: the dangers of a split personality. Arthritis Research and Therapy, 2016, 18, 169.	3.5	6
68	The Use of Poly-L-Lysine as a Capture Agent to Enhance the Detection of Antinuclear Antibodies by ELISA. PLoS ONE, 2016, 11, e0161818.	2.5	23
69	The expression of microvesicles in the blood of patients with <scp>G</scp> raves' disease and its relationship to treatment. Clinical Endocrinology, 2016, 84, 729-735.	2.4	14
70	The Alarmin Properties of DNA and DNA-associated Nuclear Proteins. Clinical Therapeutics, 2016, 38, 1029-1041.	2.5	84
71	The role of monogamous bivalency and Fc interactions in the binding of anti-DNA antibodies to DNA antigen. Clinical Immunology, 2016, 166-167, 38-47.	3.2	7
72	Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Annals of the Rheumatic Diseases, 2016, 75, 1428-1437.	0.9	232

#	Article	IF	CITATIONS
73	Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations. Scientific Reports, 2016, 6, 36025.	3.3	83
74	Anti-DNA antibodies — quintessential biomarkers of SLE. Nature Reviews Rheumatology, 2016, 12, 102-110.	8.0	198
75	Rheumatoid vasculitis: going, going, but not yet gone. Arthritis Research and Therapy, 2015, 17, 116.	3.5	3
76	The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers. PLoS ONE, 2014, 9, e90314.	2.5	74
77	The Role of HMGB1 in the Pathogenesis of Inflammatory and Autoimmune Diseases. Molecular Medicine, 2014, 20, 138-146.	4.4	274
78	The Expression of HMGB1 on Microparticles Released during Cell Activation and Cell Death In Vitro and In Vivo. Molecular Medicine, 2014, 20, 158-163.	4.4	56
79	The properties of microparticles from RAW 264.7 macrophage cells undergoing <i>inÂvitro</i> activation or apoptosis. Innate Immunity, 2014, 20, 239-248.	2.4	18
80	The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells. Clinical Immunology, 2014, 154, 178-187.	3.2	22
81	The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clinical Immunology, 2014, 153, 94-103.	3.2	10
82	The Translocation of Nuclear Molecules During Inflammation and Cell Death. Antioxidants and Redox Signaling, 2014, 20, 1117-1125.	5.4	44
83	Standardization of anti-DNA antibody assays. Immunologic Research, 2013, 56, 420-424.	2.9	19
84	The role of microparticles in the generation of immune complexes in murine lupus. Clinical Immunology, 2013, 146, 1-9.	3.2	15
85	Immune activation by histones: <scp>P</scp> lusses and minuses in inflammation. European Journal of Immunology, 2013, 43, 3163-3166.	2.9	11
86	Modeling nuclear molecule release during <i>in vitro</i> cell death. Autoimmunity, 2013, 46, 298-301.	2.6	16
87	Microparticles as mediators and biomarkers of rheumatic disease. Rheumatology, 2012, 51, 1737-1746.	1.9	57
88	HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease. Nature Reviews Rheumatology, 2012, 8, 195-202.	8.0	596
89	Advances in the treatment of inflammatory arthritis. Best Practice and Research in Clinical Rheumatology, 2012, 26, 251-261.	3.3	46
90	Microparticles as autoantigens: Making immune complexes big. Arthritis and Rheumatism, 2012, 64, 958-961.	6.7	16

#	Article	IF	CITATIONS
91	The origin and properties of extracellular DNA: From PAMP to DAMP. Clinical Immunology, 2012, 144, 32-40.	3.2	173
92	The Inhibition of Anti-DNA Binding to DNA by Nucleic Acid Binding Polymers. PLoS ONE, 2012, 7, e40862.	2.5	22
93	HMGB1 and Microparticles as Mediators of the Immune Response to Cell Death. Antioxidants and Redox Signaling, 2011, 15, 2209-2219.	5.4	42
94	Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. Journal of Autoimmunity, 2011, 36, 173-180.	6.5	139
95	Microparticles as a source of extracellular DNA. Immunologic Research, 2011, 49, 227-234.	2.9	74
96	Effects of Progesterone and Estradiol Sex Hormones on the Release of Microparticles by RAW 264.7 Macrophages Stimulated by Poly(I:C). Vaccine Journal, 2011, 18, 1420-1426.	3.1	18
97	Nucleic acid-binding polymers as anti-inflammatory agents. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14055-14060.	7.1	122
98	Are autoantibodies the targets of B-cell-directed therapy?. Nature Reviews Rheumatology, 2011, 7, 551-556.	8.0	22
99	Charlie's List. Annals of Internal Medicine, 2010, 153, 344.	3.9	Ο
100	Microparticles as autoadjuvants in the pathogenesis of SLE. Nature Reviews Rheumatology, 2010, 6, 368-372.	8.0	39
101	The release of microparticles by RAW 264.7 macrophage cells stimulated with TLR ligands. Journal of Leukocyte Biology, 2010, 87, 1115-1123.	3.3	44
102	The role of microparticles in the pathogenesis of rheumatic diseases. Nature Reviews Rheumatology, 2010, 6, 21-29.	8.0	232
103	The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Experimental Cell Research, 2009, 315, 760-768.	2.6	103
104	Post-Translational Modification of HMGB1 and Its Role in Immune Activation. , 2009, , 165-178.		0
105	A landmark study on treatment strategies for rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, S123-S125.	6.7	2
106	The role of innate immunity in the induction of autoimmunity. Autoimmunity Reviews, 2008, 8, 69-72.	5.8	94
107	High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Research and Therapy, 2008, 10, 209.	3.5	164
108	The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation. Modern Rheumatology, 2008, 18, 319-326.	1.8	34

#	Article	IF	CITATIONS
109	The Relationship between Apoptosis and High-Mobility Group Protein 1 Release from Murine Macrophages Stimulated with Lipopolysaccharide or Polyinosinic-Polycytidylic Acid. Journal of Immunology, 2007, 178, 6495-6503.	0.8	125
110	The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity, 2007, 40, 281-284.	2.6	57
111	Autoimmunity: The nuclear arsenal of autoimmunity. Immunology and Cell Biology, 2007, 85, 344-345.	2.3	1
112	The Role of IFN-α and Nitric Oxide in the Release of HMGB1 by RAW 264.7 Cells Stimulated with Polyinosinic-Polycytidylic Acid or Lipopolysaccharide. Journal of Immunology, 2006, 177, 3337-3343.	0.8	95
113	Rheumatology in 2006: crossroads or crisis?. Bulletin of the NYU Hospital for Joint Diseases, 2006, 64, 9-11.	0.7	1
114	The immune response to cell death in SLE. Autoimmunity Reviews, 2004, 3, 500-504.	5.8	25
115	DNA as a marker of cell death in systemic lupus erythematosus. Rheumatic Disease Clinics of North America, 2004, 30, 575-587.	1.9	23
116	A Walk on the Beach. Annals of Internal Medicine, 2002, 137, 366.	3.9	0
117	The role of the macrophage scavenger receptor in immune stimulation by bacterial DNA and synthetic oligonucleotides. Immunology, 2001, 103, 226-234.	4.4	68
118	Anti-DNA and autoantibodies. Current Opinion in Rheumatology, 2000, 12, 364-368.	4.3	71
119	Immune Responses to DNA in Normal and Aberrant Immunity. Immunologic Research, 2000, 22, 119-126.	2.9	19
120	The influence of base sequence on the immunostimulatory properties of DNA. Immunologic Research, 1999, 19, 35-46.	2.9	23
121	A college for its teachers. Arthritis and Rheumatism, 1999, 42, 595-598.	6.7	6
122	The binding of anti-DNA antibodies to phosphorothioate oligonucleotides in a solid phase immunoassay. Molecular Immunology, 1998, 35, 1161-1170.	2.2	10
123	Immunostimulatory DNA: A clear and present danger. Nature Medicine, 1997, 3, 829-831.	30.7	45
124	Differences in VI° gene utilization and VH CDR3 sequence among anti-DNA from C3H-lpr mice and lupus mice with nephritis. European Journal of Immunology, 1996, 26, 2225-2233.	2.9	14
125	The anti-La response of a single MRL/Mp-lpr/lpr mouse: Specificity for DNA and VH gene usage. European Journal of Immunology, 1994, 24, 1332-1338.	2.9	21
126	Interleukin-2 Receptor Levels in the Sera of Rheumatoid Arthritis Patients Treated with Methotrexate. Arthritis and Rheumatism, 1994, 37, 50-56.	6.7	16

#	Article	IF	CITATIONS
127	The Influence of DNA Size on the Binding of Anti-DNA Antibodies in the Solid and Fluid Phase. Clinical Immunology and Immunopathology, 1994, 72, 350-356.	2.0	28
128	Characterization of Antibodies to Bacterial Double-Stranded DNA in the Sera of Normal Human Subjects. International Archives of Allergy and Immunology, 1994, 105, 122-127.	2.1	17
129	Patterns of heavy and light chain utilization in the antibody response to single-stranded bacterial DNA in normal human subjects and patients with systemic lupus erythematosus. Clinical Immunology and Immunopathology, 1992, 62, 25-32.	2.0	28
130	A role for immunogenic dna in the pathogenesis of systemic lupus erythematosus. Arthritis and Rheumatism, 1990, 33, 153-159.	6.7	105
131	Cellular requirements for anti-DNA production induced in mice by immunization with bacterial DNA. European Journal of Immunology, 1990, 20, 1789-1794.	2.9	15
132	Expression of autoantibodies to recombinant (U1) RNP-associated 70K antigen in systemic lupus erythematosus. Clinical Immunology and Immunopathology, 1990, 54, 266-280.	2.0	26
133	Quantitative immunoassay of anti-la antibodies using purified recombinant la antigen. Arthritis and Rheumatism, 1988, 31, 506-514.	6.7	37
134	Specificity analysis of monoclonal anti-DNA antibodies from B6-1Pr/1Pr mice. Arthritis and Rheumatism, 1984, 27, 545-551.	6.7	19