Martina Gerbino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089641/publications.pdf

Version: 2024-02-01

101543 25,147 82 36 citations h-index papers

70 g-index 82 82 82 17227 docs citations times ranked citing authors all docs

88630

#	Article	IF	CITATIONS
1	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
2	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1	6,722
3	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	5.1	1,261
4	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	5.1	804
5	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	5.4	741
6	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
7	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2021, 652, C4.	5.1	627
8	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	5.1	613
9	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	5.1	558
10	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8.	5.1	400
11	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
12	<i>Planck</i> iiiintermediate results. Astronomy and Astrophysics, 2016, 596, A107.	5.1	359
13	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	5.1	319
14	Unveiling <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{l}^1/2$</mml:mi></mml:math> secrets with cosmological data: Neutrino masses and mass hierarchy. Physical Review D, 2017, 96, .	4.7	277
15	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A4.	5.1	218
16	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A109.	5.1	185
17	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A7.	5.1	172
18	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A3.	5.1	158

#	ARTICLE ints on the sum of the neutrino masses in dynamical dark energy models with <mml:math <="" th="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mit"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
19	display="inline"> (mml:mrow> (mml:mi>w (mml:mo) stretchy="false"> ((mml:mi>z (mml:mo) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 737	T d.(stretcl	ny,≄"false">)
20	Improvement of cosmological neutrino mass bounds. Physical Review D, 2016, 94, .	4.7	136
21	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
22	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 643, A42.	5.1	123
23	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A12.	5.1	105
24	Status of Neutrino Properties and Future Prospectsâ€"Cosmological and Astrophysical Constraints. Frontiers in Physics, 2018, 5, .	2.1	102
25	Exploring cosmic origins with CORE: Survey requirements and mission design. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	5.4	98
26	LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. , 2020, , .		79
27	CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. Astrophysical Journal, 2022, 926, 54.	4.5	79
28	Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	75
29	Exploring cosmic origins with CORE: Cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	5.4	7 3
30	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A2.	5.1	72
31	Impact of neutrino properties on the estimation of inflationary parameters from current and future observations. Physical Review D, 2017, 95, .	4.7	70
32	Bias due to neutrinos must not uncorrect'd go. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 001-001.	5.4	65
33	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A110.	5.1	64
34	The Simons Observatory: instrument overview. , 2018, , .		56
35	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
36	Updated constraints and forecasts on primordial tensor modes. Physical Review D, 2016, 93, .	4.7	46

#	Article	IF	CITATIONS
37	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
38	Exploring cosmic origins with CORE: <i>B</i> mode component separation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	5.4	44
39	A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 775, 239-250.	4.1	36
40	Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 044-044.	5.4	34
41	Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches. Physical Review D, 2021, 104, .	4.7	32
42	Exploring cosmic origins with CORE: Gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	5.4	29
43	The large scale polarization explorer (LSPE) for CMB measurements: performance forecast. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	5.4	27
44	Dark radiation and inflationary freedom after Planck 2015. Physical Review D, 2016, 93, .	4.7	26
45	POLOCALC: A Novel Method to Measure the Absolute Polarization Orientation of the Cosmic Microwave Background. Journal of Astronomical Instrumentation, 2017, 06, .	1.5	25
46	Exploring cosmic origins with CORE: The instrument. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	25
47	Constraints on the early and late integrated Sachs-Wolfe effects from the Planck 2015 cosmic microwave background anisotropies in the angular power spectra. Physical Review D, 2015, 92, .	4.7	24
48	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2017, 607, A122.	5.1	24
49	Blue gravity waves from BICEP2?. Physical Review D, 2014, 90, .	4.7	23
50	Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 001-001.	5.4	23
51	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
52	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>\hat{l}/2 </mml:mi> </mml:math> generation: Present and future constraints on neutrino masses from global analysis of cosmology and laboratory experiments. Physical Review D, 2016, 93, .	4.7	21
53	Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	5.4	20
54	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A100.	5.1	20

#	Article	IF	CITATIONS
55	Neutrino anisotropies after Planck. Physical Review D, 2013, 88, .	4.7	19
56	Exploring cosmic origins with CORE: Effects of observer peculiar motion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	18
57	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
58	Exploring cosmic origins with CORE: Cluster science. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	5.4	17
59	Planck constraints on the effective neutrino number and the CMB power spectrum lensing amplitude. Physical Review D, 2013, 88, .	4.7	16
60	On the impact of large angle CMB polarization data on cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 041-041.	5.4	15
61	Breaking Be: a sterile neutrino solution to the cosmological lithium problem. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 022-022.	5.4	14
62	Exploring cosmic origins with CORE: Mitigation of systematic effects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	5.4	14
63	The Simons Observatory: gain, bandpass and polarization-angle calibration requirements for B-mode searches. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 032.	5.4	14
64	Likelihood Methods for CMB Experiments. Frontiers in Physics, 2020, 8, .	2.1	12
65	In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 039.	5.4	9
66	Cosmological data and indications for new physics. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 030-030.	5.4	8
67	Probing the weak gravity conjecture in the cosmic microwave background. Physical Review D, 2020, 101, .	4.7	6
68	Studies of systematic uncertainties for Simons Observatory: polarization modulator related effects. , 2018, , .		6
69	Cornering (quasi) degenerate neutrinos with cosmology. Journal of High Energy Physics, 2020, 2020, 1.	4.7	4
70	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99.	5.1	4
71	Development of calibration strategies for the Simons Observatory. , 2018, , .		4
72	Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD., 2020,,.		4

#	Article	IF	CITATIONS
73	Overview of the medium and high frequency telescopes of the LiteBIRD space mission. , 2020, , .		3
74	Detailed study of HWP non-idealities and their impact on future measurements of CMB polarization anisotropies from space. Astronomy and Astrophysics, 2022, 658, A15.	5.1	3
75	Dark radiation and the CMB bispectrum. Physical Review D, 2013, 87, .	4.7	1
76	Updated cosmological constraints on Macroscopic Dark Matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 027.	5.4	1
77	Neutrino mass scale in the era of precision cosmology. Journal of Physics: Conference Series, 2014, 566, 012003.	0.4	O
78	Recent results and perspectives on cosmology and fundamental physics from microwave surveys. International Journal of Modern Physics D, 2016, 25, 1630016.	2.1	0
79	Airborne, Far-Field Calibrators for Cosmic Microwave Background Telescopes: POLOCALC. , 2018, , .		O
80	The hunt for the neutrino hierarchy. , 2017, , .		0
81	Joint constraints on neutrino masses from cosmology and particle physics. , 2017, , .		O
82	Constraints on the early and late integrated Sachs-Wolfe effects after Planck 2015., 2017,,.		O