Bunmei Taguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089328/publications.pdf

Version: 2024-02-01

236925 206112 2,455 61 25 48 citations h-index g-index papers 67 67 67 2021 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast*. Journal of Climate, 2007, 20, 2357-2377.	3.2	243
2	Influences of the Kuroshio/Oyashio Extensions on Air–Sea Heat Exchanges and Storm-Track Activity as Revealed in Regional Atmospheric Model Simulations for the 2003/04 Cold Season*. Journal of Climate, 2009, 22, 6536-6560.	3.2	174
3	A Coupled Decadal Prediction of the Dynamic State of the Kuroshio Extension System. Journal of Climate, 2014, 27, 1751-1764.	3.2	173
4	Seasonal Evolutions of Atmospheric Response to Decadal SST Anomalies in the North Pacific Subarctic Frontal Zone: Observations and a Coupled Model Simulation. Journal of Climate, 2012, 25, 111-139.	3.2	147
5	North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems*. Journal of Climate, 2009, 22, 5163-5174.	3.2	139
6	Synthesis of Pacific Ocean Climate and Ecosystem Dynamics. Oceanography, 2013, 26, 68-81.	1.0	139
7	Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nature Geoscience, 2013, 6, 43-47.	12.9	118
8	Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research, 2010, 115, .	3.3	102
9	Oceanic fronts and jets around Japan: a review. Journal of Oceanography, 2015, 71, 469-497.	1.7	92
10	On the triggering of Benguela Ni $ ilde{A}\pm$ os: Remote equatorial versus local influences. Geophysical Research Letters, 2010, 37, .	4.0	86
11	Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophysical Research Letters, 2006, 33, .	4.0	76
12	Air–Sea Heat Exchanges Characteristic of a Prominent Midlatitude Oceanic Front in the South Indian Ocean as Simulated in a High-Resolution Coupled GCM. Journal of Climate, 2009, 22, 6515-6535.	3.2	65
13	Response of the Kuroshio Extension to Rossby Waves Associated with the 1970s Climate Regime Shift in a High-Resolution Ocean Model*. Journal of Climate, 2005, 18, 2979-2995.	3.2	64
14	Decadal variability of the Kuroshio Extension: mesoscale eddies and recirculations. Ocean Dynamics, 2010, 60, 673-691.	2.2	56
15	Anticyclonic eddies and Kuroshio Meander Formation. Geophysical Research Letters, 2001, 28, 2025-2028.	4.0	51
16	What controls equatorial Atlantic winds in boreal spring?. Climate Dynamics, 2014, 43, 3091-3104.	3.8	50
17	Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dynamics, 2017, 48, 3615-3629.	3.8	48
18	On the eddy-Kuroshio interaction: Meander formation process. Journal of Geophysical Research, 2003, 108, .	3.3	43

#	Article	IF	Citations
19	How potentially predictable are midlatitude ocean currents?. Scientific Reports, 2016, 6, 20153.	3.3	42
20	Numerical Study on the Oyashio Water Pathways in the Kuroshio–Oyashio Confluence*. Journal of Physical Oceanography, 2004, 34, 1174-1196.	1.7	37
21	Deep ocean inertiaâ€gravity waves simulated in a highâ€resolution global coupled atmosphere–ocean GCM. Geophysical Research Letters, 2008, 35, .	4.0	35
22	Systematic Errors in South Asian Monsoon Simulation: Importance of Equatorial Indian Ocean Processes. Journal of Climate, 2017, 30, 8159-8178.	3.2	35
23	Largeâ€scale climate control of zooplankton transport and biogeography in the Kuroshioâ€Oyashio Extension region. Geophysical Research Letters, 2013, 40, 5182-5187.	4.0	33
24	On the eddy-Kuroshio interaction: Evolution of the mesoscale eddy. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	28
25	Potential Predictability of Interannual Variability in the Kuroshio Extension Jet Speed in an Eddy-Resolving OGCM. Journal of Climate, 2012, 25, 3645-3652.	3.2	28
26	Origin of Decadal-Scale, Eastward-Propagating Heat Content Anomalies in the North Pacific*. Journal of Climate, 2014, 27, 7568-7586.	3.2	26
27	A global eddying hindcast ocean simulation with OFES2. Geoscientific Model Development, 2020, 13, 3319-3336.	3.6	22
28	Mechanisms for the Maintenance of the Wintertime Basin-Scale Atmospheric Response to Decadal SST Variability in the North Pacific Subarctic Frontal Zone. Journal of Climate, 2018, 31, 297-315.	3.2	21
29	Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the trade winds. Ocean Dynamics, 2010, 60, 705-715.	2.2	19
30	East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets. Journal of Geophysical Research, 2012, 117, .	3.3	16
31	Multidecadal modulations of the lowâ€frequency climate variability in the wintertime North Pacific since 1950. Geophysical Research Letters, 2014, 41, 2948-2955.	4.0	16
32	Reply to: Is sea-ice-driven Eurasian cooling too weak in models?. Nature Climate Change, 2019, 9, 937-939.	18.8	16
33	Deep oceanic zonal jets constrained by fineâ€scale wind stress curls in the South Pacific Ocean: A highâ€resolution coupled GCM study. Geophysical Research Letters, 2012, 39, .	4.0	15
34	Atmospheric-Driven and Intrinsic Interannual-to-Decadal Variability in the Kuroshio Extension Jet and Eddy Activities. Frontiers in Marine Science, 2020, 7, .	2.5	15
35	Baiu Rainband Termination in Atmospheric and Coupled Atmosphere–Ocean Models. Journal of Climate, 2013, 26, 10111-10124.	3.2	13
36	Coastal upwelling along the north coast of Papua New Guinea and El Niño events during 1981–2005. Ocean Dynamics, 2010, 60, 1255-1269.	2.2	12

#	Article	IF	CITATIONS
37	Decadal Variability of Upper-Ocean Heat Content Associated with Meridional Shifts of Western Boundary Current Extensions in the North Pacific. Journal of Climate, 2017, 30, 6247-6264.	3.2	12
38	Eastward propagating decadal temperature variability in the <scp>S</scp> outh <scp>A</scp> tlantic and <scp>I</scp> ndian <scp>O</scp> ceans. Journal of Geophysical Research: Oceans, 2017, 122, 5611-5623.	2.6	12
39	Blocking of the Kuroshio Large Meander by Baroclinic Interaction with the Izu Ridge. Journal of Physical Oceanography, 2006, 36, 2042-2059.	1.7	11
40	Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface. Journal of Oceanography, 2012, 68, 93-111.	1.7	11
41	Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM. Ocean Modelling, 2018, 122, 36-56.	2.4	11
42	Processes Shaping the Frontal-Scale Time-Mean Surface Wind Convergence Patterns around the Kuroshio Extension in Winter. Journal of Climate, 2020, 33, 3-25.	3.2	11
43	Impact of downward heat penetration below the shallow seasonal thermocline on the sea surface temperature. Journal of Oceanography, 2015, 71, 541-556.	1.7	10
44	Processes Shaping the Frontal-Scale Time-Mean Surface Wind Convergence Patterns around the Gulf Stream and Agulhas Return Current in Winter. Journal of Climate, 2020, 33, 9083-9101.	3.2	9
45	Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface., 2011,, 89-107.		8
46	Summer-to-Winter Sea-Ice Linkage between the Arctic Ocean and the Okhotsk Sea through Atmospheric Circulation. Journal of Climate, 2015, 28, 4971-4979.	3.2	8
47	Influence of Local Dynamical Air–Sea Feedback Process on the Hawaiian Lee Countercurrent. Journal of Climate, 2013, 26, 7267-7279.	3.2	7
48	Oceanic fronts and jets around Japan: a review. , 2016, , 1-30.		7
49	An Atmospheric General Circulation Model Assessment of Oceanic Impacts on Extreme Climatic Events over Japan in July 2018. Journal of the Meteorological Society of Japan, 2020, 98, 801-820.	1.8	7
50	Significance of High-Frequency Wind Forcing in Modelling the Kuroshio. Journal of Oceanography, 2005, 61, 539-548.	1.7	6
51	Quasi-Decadal Circumpolar Variability of Antarctic Sea Ice. Scientific Online Letters on the Atmosphere, 2013, 9, 32-35.	1.4	6
52	Oceanic moisture sources contributing to wintertime Euro-Atlantic blocking. Weather and Climate Dynamics, 2021, 2, 819-840.	3.5	4
53	Reply to: Eurasian cooling in response to Arctic sea-ice loss is not proved by maximum covariance analysis. Nature Climate Change, 2021, 11, 109-111.	18.8	3
54	Impact of downward heat penetration below the shallow seasonal thermocline on the sea surface temperature. , 2016 , , $73-89$.		3

#	Article	IF	Citations
55	Ensemble-Based Atmospheric Reanalysis Using a Global Coupled Atmosphere–Ocean GCM. Monthly Weather Review, 2018, 146, 3311-3323.	1.4	2
56	Potential Predictability of the Tropical Cyclone Frequency Over the Western North Pacific With 50â€km AGCM Ensemble Experiments. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034206.	3.3	2
57	Modulations of North American and European Weather Variability and Extremes by Interdecadal Variability of the Atmospheric Circulation over the North Atlantic Sector. Journal of Climate, 2020, 33, 8125-8146.	3.2	2
58	Maintenance Mechanisms of the Wintertime Subtropical High over the South Indian Ocean. Journal of Climate, 2022, 35, 2989-3005.	3.2	2
59	The effective use of shortwave penetration below the ocean surface in a MOM3-based ocean general circulation model. JAMSTEC Report of Research and Development, 2012, 15, 35-46.	0.2	1
60	The Earth Simulator Center. JAMSTEC Report of Research and Development, 2009, 9, 1_75-1_135.	0.2	1
61	Is summer sea surface temperature over the Arctic Ocean connected to winter air temperature over North America?. Climate Research, 2016, 70, 19-27.	1.1	0