Patrick C Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature, 2008, 453, 667-671.	27.8	959
2	Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. Journal of Experimental Medicine, 2011, 208, 181-193.	8.5	775
3	Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7852-7857.	7.1	479
4	Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nature Protocols, 2009, 4, 372-384.	12.0	458
5	Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12578-12583.	7.1	437
6	Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A. Immunity, 2015, 43, 541-553.	14.3	425
7	Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell, 2019, 178, 1313-1328.e13.	28.9	402
8	Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature, 2010, 467, 591-595.	27.8	393
9	Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9047-9052.	7.1	371
10	Immune history profoundly affects broadly protective B cell responses to influenza. Science Translational Medicine, 2015, 7, 316ra192.	12.4	353
11	Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. Journal of Clinical Investigation, 2016, 126, 605-610.	8.2	349
12	Natural polyreactive IgA antibodies coat the intestinal microbiota. Science, 2017, 358, .	12.6	344
13	Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell, 2018, 173, 417-429.e10.	28.9	295
14	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	30.7	271
15	Proinflammatory IgG Fc structures in patients with severe COVID-19. Nature Immunology, 2021, 22, 67-73.	14.5	239
16	Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host and Microbe, 2016, 19, 800-813.	11.0	238
17	From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends in Immunology, 2018, 39, 70-79.	6.8	208
18	A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature Medicine, 2021, 27, 106-114.	30.7	204

#	Article	IF	CITATIONS
19	Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15798-15803.	7.1	203
20	Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Science Immunology, 2017, 2, .	11.9	203
21	Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13133-13138.	7.1	197
22	NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines?. MBio, 2018, 9, .	4.1	192
23	The influenza virus hemagglutinin head evolves faster than the stalk domain. Scientific Reports, 2018, 8, 10432.	3.3	171
24	Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11931-11936.	7.1	153
25	Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nature Communications, 2017, 8, 846.	12.8	134
26	Tools to therapeutically harness the human antibody response. Nature Reviews Immunology, 2012, 12, 709-719.	22.7	128
27	<i>Staphylococcus aureus</i> infection induces protein A–mediated immune evasion in humans. Journal of Experimental Medicine, 2014, 211, 2331-2339.	8.5	125
28	Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host and Microbe, 2019, 25, 357-366.e6.	11.0	124
29	Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. Journal of Clinical Investigation, 2015, 125, 1255-1268.	8.2	115
30	High Preexisting Serological Antibody Levels Correlate with Diversification of the Influenza Vaccine Response. Journal of Virology, 2015, 89, 3308-3317.	3.4	112
31	B Cell Responses during Secondary Dengue Virus Infection Are Dominated by Highly Cross-Reactive, Memory-Derived Plasmablasts. Journal of Virology, 2016, 90, 5574-5585.	3.4	111
32	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	4.7	104
33	Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infectious Diseases, The, 2020, 20, 80-91.	9.1	103
34	Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 2021, 54, 1290-1303.e7.	14.3	101
35	Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses. PLoS ONE, 2012, 7, e41895.	2.5	92
36	BASIC: BCR assembly from single cells. Bioinformatics, 2017, 33, 425-427.	4.1	87

#	Article	IF	CITATIONS
37	Aging and influenza vaccine-induced immunity. Cellular Immunology, 2020, 348, 103998.	3.0	87
38	Rapid Generation of Rotavirus-Specific Human Monoclonal Antibodies from Small-Intestinal Mucosa. Journal of Immunology, 2010, 185, 5377-5383.	0.8	83
39	Germinal Center Selection and the Antibody Response to Influenza. Cell, 2015, 163, 545-548.	28.9	83
40	Vimentin Is a Dominant Target of In Situ Humoral Immunity in Human Lupus Tubulointerstitial Nephritis. Arthritis and Rheumatology, 2014, 66, 3359-3370.	5.6	82
41	SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. MBio, 2021, 12, .	4.1	81
42	Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. ELife, 2019, 8, .	6.0	80
43	Loss of Anergic B Cells in Prediabetic and New-Onset Type 1 Diabetic Patients. Diabetes, 2015, 64, 1703-1712.	0.6	79
44	Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease?. Current Opinion in Immunology, 2016, 42, 48-55.	5.5	78
45	Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature, 2022, 602, 314-320.	27.8	78
46	Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Science Translational Medicine, 2020, 12, .	12.4	77
47	Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nature Microbiology, 2021, 6, 1493-1504.	13.3	77
48	Restricted, canonical, stereotyped and convergent immunoglobulin responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140238.	4.0	75
49	Single-Cell Genomics: Approaches and Utility in Immunology. Trends in Immunology, 2017, 38, 140-149.	6.8	66
50	Refined protocol for generating monoclonal antibodies from single human and murine B cells. Journal of Immunological Methods, 2016, 438, 67-70.	1.4	65
51	Harnessing immune history to combat influenza viruses. Current Opinion in Immunology, 2018, 53, 187-195.	5.5	64
52	Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity, 2020, 53, 1230-1244.e5.	14.3	61
53	The neuraminidase of A(H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nature Microbiology, 2019, 4, 2216-2225.	13.3	59
54	Hemagglutinin Stalk-Reactive Antibodies Interfere with Influenza Virus Neuraminidase Activity by Steric Hindrance. Journal of Virology, 2019, 93, .	3.4	47

#	Article	IF	CITATIONS
55	Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nature Communications, 2014, 5, 4041.	12.8	46
56	An Efficient Method to Generate Monoclonal Antibodies from Human B Cells. Methods in Molecular Biology, 2019, 1904, 109-145.	0.9	43
57	Imprinting, immunodominance, and other impediments to generating broad influenza immunity. Immunological Reviews, 2020, 296, 191-204.	6.0	42
58	Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination. Journal of Clinical Investigation, 2018, 129, 93-105.	8.2	40
59	Crossâ€reactive humoral responses to influenza and their implications for a universal vaccine. Annals of the New York Academy of Sciences, 2013, 1283, 13-21.	3.8	38
60	First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes. Science Translational Medicine, 2021, 13, .	12.4	38
61	High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination. PLoS ONE, 2015, 10, e0125618.	2.5	35
62	Broadly Reactive Human Monoclonal Antibodies Elicited following Pandemic H1N1 Influenza Virus Exposure Protect Mice against Highly Pathogenic H5N1 Challenge. Journal of Virology, 2018, 92, .	3.4	33
63	Remembering seasonal coronaviruses. Science, 2020, 370, 1272-1273.	12.6	32
64	B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses, 2021, 13, 965.	3.3	31
65	Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Scientific Reports, 2017, 7, 10857.	3.3	29
66	Nur77 Links Chronic Antigen Stimulation to B Cell Tolerance by Restricting the Survival of Self-Reactive B Cells in the Periphery. Journal of Immunology, 2019, 202, 2907-2923.	0.8	29
67	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
68	Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. ELife, 2020, 9, .	6.0	29
69	Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike. MBio, 2021, 12, e0297521.	4.1	24
70	Correctly folded - but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine, 2020, 38, 7129-7137.	3.8	23
71	Identification of Antibodies Targeting the H3N2 Hemagglutinin Receptor Binding Site following Vaccination of Humans. Cell Reports, 2019, 29, 4460-4470.e8.	6.4	22
72	Crowd on a Chip: Label-Free Human Monoclonal Antibody Arrays for Serotyping Influenza. Analytical Chemistry, 2018, 90, 9583-9590.	6.5	19

#	Article	IF	CITATIONS
73	Mutations in the Hemagglutinin Stalk Domain Do Not Permit Escape from a Protective, Stalk-Based Vaccine-Induced Immune Response in the Mouse Model. MBio, 2021, 12, .	4.1	19
74	Monoclonal Antibody Responses after Recombinant Hemagglutinin Vaccine versus Subunit Inactivated Influenza Virus Vaccine: a Comparative Study. Journal of Virology, 2019, 93, .	3.4	18
75	Identification and Characterization of Novel Antibody Epitopes on the N2 Neuraminidase. MSphere, 2021, 6, .	2.9	15
76	Emerging from the Shadow of Hemagglutinin: Neuraminidase Is an Important Target for Influenza Vaccination. Cell Host and Microbe, 2019, 26, 712-713.	11.0	13
77	Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-Plasmodium humoral immunity. PLoS Pathogens, 2021, 17, e1009288.	4.7	13
78	Hemolysis-associated phosphatidylserine exposure promotes polyclonal plasmablast differentiation. Journal of Experimental Medicine, 2021, 218, .	8.5	12
79	Memory B cell diversity: insights for optimized vaccine design. Trends in Immunology, 2022, 43, 343-354.	6.8	12
80	What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028803.	5.5	11
81	Human Anti-neuraminidase Antibodies Reduce Airborne Transmission of Clinical Influenza Virus Isolates in the Guinea Pig Model. Journal of Virology, 2022, 96, JVI0142121.	3.4	11
82	Biogenesis of Influenza A Virus Hemagglutinin Cross-Protective Stem Epitopes. PLoS Pathogens, 2014, 10, e1004204.	4.7	8
83	Generation of Escape Variants of Neutralizing Influenza Virus Monoclonal Antibodies. Journal of Visualized Experiments, 2017, , .	0.3	8
84	Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
85	An Egg-Derived Sulfated <i>N</i> -Acetyllactosamine Glycan Is an Antigenic Decoy of Influenza Virus Vaccines. MBio, 2021, 12, e0083821.	4.1	8
86	Novel Epitopes of the Influenza Virus N1 Neuraminidase Targeted by Human Monoclonal Antibodies. Journal of Virology, 2022, , e0033222.	3.4	8
87	Taking the Broad View on B Cell Affinity Maturation. Immunity, 2016, 44, 518-520.	14.3	7
88	Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus. Nature Communications, 2021, 12, 6161.	12.8	6
89	It's Hard to Teach an Old B Cell New Tricks. Cell, 2020, 180, 18-20.	28.9	4
90	Machine Learning to Quantify In Situ Humoral Selection in Human Lupus Tubulointerstitial Inflammation. Frontiers in Immunology, 2020, 11, 593177.	4.8	4

#	Article	IF	CITATIONS
91	Bridging the B Cell Gap: Novel Technologies to Study Antigen-Specific Human B Cell Responses. Vaccines, 2021, 9, 711.	4.4	4
92	To B or not to B maintained?. Blood, 2016, 128, 317-318.	1.4	3
93	Characterization of Novel Cross-Reactive Influenza B Virus Hemagglutinin Head Specific Antibodies That Lack Hemagglutination Inhibition Activity. Journal of Virology, 2020, 94, .	3.4	3
94	High-complexity extracellular barcoding using a viral hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2767-2769.	7.1	2
95	Librator: a platform for the optimized analysis, design, and expression of mutable influenza viral antigens. Briefings in Bioinformatics, 2022, 23, .	6.5	2
96	Teach â€~em young: Influenza vaccines induce broadly neutralizing antibodies in children. Cell Reports Medicine, 2022, 3, 100531.	6.5	1
97	Editorial overview: Tough targets. Current Opinion in Immunology, 2018, 53, iv-vi.	5.5	0
98	Characterization of the immunologic repertoire: A quick start guide. Immunological Reviews, 2018, 284, 5-8.	6.0	0
99	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
100	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
101	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
102	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
103	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
104	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0

7