Helene Carton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089122/publications.pdf Version: 2024-02-01

HELENE CARTON

#	Article	IF	CITATIONS
1	Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust: Reply to Commentary. Earth and Planetary Science Letters, 2021, 557, 116744.	4.4	1
2	Seismic Crustal Structure and Morphotectonic Features Associated With the Chain Fracture Zone and Their Role in the Evolution of the Equatorial Atlantic Region. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020275.	3.4	22
3	Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust. Earth and Planetary Science Letters, 2020, 538, 116197.	4.4	21
4	Is There a Nascent Plate Boundary in the Northern Indian Ocean?. Geophysical Research Letters, 2020, 47, e2020GL087362.	4.0	11
5	Stratigraphic Control of Frontal Décollement Level and Structural Vergence and Implications for Tsunamigenic Earthquake Hazard in Sumatra, Indonesia. Geochemistry, Geophysics, Geosystems, 2019, 20, 1646-1664.	2.5	10
6	Alongâ€Trench Structural Variations of the Subducting Juan de Fuca Plate From Multichannel Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 2018, 123, 3122-3146.	3.4	19
7	Crustal Magmatic System Beneath the East Pacific Rise (8°20′ to 10°10′N): Implications for Tectonomagmatic Segmentation and Crustal Melt Transport at Fastâ€5preading Ridges. Geochemistry, Geophysics, Geosystems, 2018, 19, 4584-4611.	2.5	25
8	Evidence of pervasive trans-tensional deformation in the northwestern Wharton Basin in the 2012 earthquakes rupture area. Earth and Planetary Science Letters, 2018, 502, 174-186.	4.4	14
9	The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. Science Advances, 2017, 3, e1601689.	10.3	34
10	Constraints on melt content of offâ€axis magma lenses at the East Pacific Rise from analysis of 3â€D seismic amplitude variation with angle of incidence. Journal of Geophysical Research: Solid Earth, 2017, 122, 4123-4142.	3.4	9
11	Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone. Nature Geoscience, 2017, 10, 864-870.	12.9	46
12	A 2â€Ð tomographic model of the Juan de Fuca plate from accretion at axial seamount to subduction at the Cascadia margin from an active source ocean bottom seismometer survey. Journal of Geophysical Research: Solid Earth, 2016, 121, 5859-5879.	3.4	41
13	Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research: Solid Earth, 2016, 121, 1849-1872.	3.4	72
14	Distribution of melt along the East Pacific Rise from 9°30′ to 10°N from an amplitude variation with angle of incidence (AVA) technique. Geophysical Journal International, 2015, 203, 1-21.	2.4	15
15	A multi-sill magma plumbing system beneath the axis of the East Pacific Rise. Nature Geoscience, 2014, 7, 825-829.	12.9	76
16	Architecture of on- and off-axis magma bodies at EPR 9°37–40′N and implications for oceanic crustal accretion. Earth and Planetary Science Letters, 2014, 390, 31-44.	4.4	44
17	Variations in axial magma lens properties along the East Pacific Rise (9°30′N–10°00′N) from swath 3á seismic imaging and 1â€D waveform inversion. Journal of Geophysical Research: Solid Earth, 2014, 119, 2721-2744.	€D 3.4	31
18	Deep seismic reflection images of the Wharton Basin oceanic crust and uppermost mantle offshore Northern Sumatra: Relation with active and past deformation. Journal of Geophysical Research: Solid Earth, 2014, 119, 32-51.	3.4	36

HELENE CARTON

#	Article	IF	CITATIONS
19	Crustal thickness and Moho character of the fastâ€spreading East Pacific Rise from 9°42′N to 9°57′N fro poststackâ€migrated 3â€D MCS data. Geochemistry, Geophysics, Geosystems, 2014, 15, 634-657.	2.5	46
20	Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience, 2013, 6, 866-870.	12.9	99
21	Network of off-axis melt bodies at the East PacificÂRise. Nature Geoscience, 2012, 5, 279-283.	12.9	53
22	Recent Seismic Studies at the East Pacific Rise 8°20'–10°10'N and Endeavour Segment: Insights into Mid-Ocean Ridge Hydrothermal and Magmatic Processes. Oceanography, 2012, 25, 100-112.	1.0	28
23	Extremely thin crust in the Indian Ocean possibly resulting from Plume-Ridge Interaction. Geophysical Journal International, 2011, 184, 29-42.	2.4	53
24	Aseismic zone and earthquake segmentation associated with a deep subducted seamount inÂSumatra. Nature Geoscience, 2011, 4, 308-311.	12.9	117
25	Seismic Imaging in Three Dimensions on the East Pacific Rise. Eos, 2009, 90, 374-375.	0.1	15
26	Seismic evidence for broken oceanic crustÂin the 2004 Sumatra earthquake epicentralÂregion. Nature Geoscience, 2008, 1, 777-781.	12.9	112
27	Impact of lower plate structure on upper plate deformation at the NW Sumatran convergent margin from seafloor morphology. Earth and Planetary Science Letters, 2008, 275, 201-210.	4.4	67