Rajnikant Dixit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089025/publications.pdf

Version: 2024-02-01

		516710	345221
51	1,454 citations	16	36
papers	citations	h-index	g-index
68	68	68	1928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hemocyte Differentiation Mediates Innate Immune Memory in <i>Anopheles gambiae</i> Mosquitoes. Science, 2010, 329, 1353-1355.	12.6	395
2	Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Frontiers in Pharmacology, 2016, 7, 107.	3.5	191
3	The STAT Pathway Mediates Late-Phase Immunity against Plasmodium in the Mosquito Anopheles gambiae. Cell Host and Microbe, 2009, 5, 498-507.	11.0	157
4	Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasites and Vectors, 2014, 7, 235.	2.5	101
5	Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi. Frontiers in Immunology, 2020, 11, 609.	4.8	41
6	Interorgan Molecular Communication Strategies of "Local―and "Systemic―Innate Immune Responses in Mosquito Anopheles stephensi. Frontiers in Immunology, 2018, 9, 148.	4.8	37
7	Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi. International Journal of Infectious Diseases, 2009, 13, 636-646.	3.3	34
8	Structure-Function of Falcipains: Malarial Cysteine Proteases. Journal of Tropical Medicine, 2012, 2012, 1-11.	1.7	34
9	Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi. Gene, 2016, 585, 177-190.	2.2	34
10	Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies. Biology Open, 2015, 4, 1002-1015.	1.2	32
11	Salivary gland transcriptome analysis in response to sugar feeding in malaria vector Anopheles stephensi. Journal of Insect Physiology, 2011, 57, 1399-1406.	2.0	30
12	Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation. PLoS ONE, 2011, 6, e18400.	2.5	26
13	A Synergistic Transcriptional Regulation of Olfactory Genes Drives Blood-Feeding Associated Complex Behavioral Responses in the Mosquito Anopheles culicifacies. Frontiers in Physiology, 2018, 9, 577.	2.8	26
14	An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae. PLoS ONE, 2012, 7, e35210.	2.5	20
15	The Ionic and Hydrophobic Interactions Are Required for the Auto Activation of Cysteine Proteases of Plasmodium falciparum. PLoS ONE, 2012, 7, e47227.	2.5	20
16	Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum. Scientific Reports, 2017, 7, 41119.	3.3	18
17	Allosteric Site Inhibitor Disrupting Auto-Processing of Malarial Cysteine Proteases. Scientific Reports, 2018, 8, 16193.	3.3	16
18	Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD. BMC Pulmonary Medicine, 2020, 20, 302.	2.0	16

#	Article	IF	Citations
19	Metacaspases: Potential Drug Target Against Protozoan Parasites. Frontiers in Pharmacology, 2019, 10, 790.	3.5	15
20	Biochemical characterization of unusual cysteine protease of P. falciparum , metacaspase-2 (MCA-2). Molecular and Biochemical Parasitology, 2018, 220, 28-41.	1.1	14
21	Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi. Acta Tropica, 2008, 106, 75-79.	2.0	13
22	Evaluation of four novel isothermal amplification assays towards simple and rapid genotyping of chloroquine resistant Plasmodium falciparum. Experimental Parasitology, 2018, 190, 1-9.	1.2	13
23	Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in <i>Blastocystis</i> : The Emerging Role of Gatekeeper Residues. Biochemistry, 2017, 56, 534-542.	2.5	11
24	Current scenario and future strategies to fight artemisinin resistance. Parasitology Research, 2019, 118, 29-42.	1.6	11
25	Sequence homology and structural analysis of plasmepsin 4 isolated from Indian Plasmodium vivax isolates. Infection, Genetics and Evolution, 2011, 11, 924-933.	2.3	10
26	Sex specific molecular responses of quick-to-court protein in Indian malarial vector Anopheles culicifacies: conflict of mating versus blood feeding behaviour. Heliyon, 2017, 3, e00361.	3.2	10
27	Molecular and Functional Characterization of Trehalase in the Mosquito Anopheles stephensi. Frontiers in Physiology, 2020, 11, 575718.	2.8	10
28	Molecular and phylogenetic analysis of a novel family of fibrinogen-related proteins from mosquito Aedes albopictus cell line. Computational Biology and Chemistry, 2008, 32, 382-386.	2.3	9
29	Cross-Talk between Malarial Cysteine Proteases and Falstatin: The BC Loop as a Hot-Spot Target. PLoS ONE, 2014, 9, e93008.	2.5	9
30	Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in Athe mosquito Anopheles culicifacies: an evolutionary puzzle. F1000Research, 2015, 4, 1523.	1.6	9
31	Genetic changes of Plasmodium vivax tempers host tissue-specific responses in Anopheles stephensi. Current Research in Immunology, 2021, 2, 12-22.	2.8	8
32	Dissecting The role of <i>Plasmodium</i> metacaspase-2 in malaria gametogenesis and sporogony. Emerging Microbes and Infections, 2022, 11, 938-955.	6.5	8
33	Crucial residues in falcipains that mediate hemoglobin hydrolysis. Experimental Parasitology, 2019, 197, 43-50.	1.2	7
34	Hemocyte RNA-Seq analysis of Indian malarial vectors Anopheles stephensi and Anopheles culicifacies: From similarities to differences. Gene, 2021, 798, 145810.	2.2	7
35	Metacaspase-3 of Plasmodium falciparum: An atypical trypsin-like serine protease. International Journal of Biological Macromolecules, 2019, 138, 309-320.	7.5	6
36	Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells, 2022, 11, 1798.	4.1	6

#	Article	IF	CITATIONS
37	Hemocyteâ€specific FREP13 abrogates the exogenous bacterial population in the hemolymph and promotes midgut endosymbionts in Anopheles stephensi. Immunology and Cell Biology, 2020, 98, 757-769.	2.3	5
38	Identification of putative innate immune related genes from a cell line of the mosquito Aedes albopictus following bacterial challenge. Innate Immunity, 2011, 17, 106-117.	2.4	4
39	Proteases in Mosquito Borne Diseases: New Avenues in Drug Development. Current Topics in Medicinal Chemistry, 2017, 17, 2221-2232.	2.1	4
40	Transcriptional responses of attractin gene in the mosquito Anopheles culicifacies: A synergistic neuro-olfactory regulation. Journal of Vector Borne Diseases, 2018, 55, 89.	0.4	3
41	Molecular identification of Aedes aegypti mosquitoes from Pilani region of Rajasthan, India. Journal of Vector Borne Diseases, 2016, 53, 149-55.	0.4	3
42	A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi. Scientific Reports, 2022, 12, 2597.	3.3	3
43	Transcriptome analysis of Anopheles stephensi embryo using expressed sequence tags. Journal of Biosciences, 2013, 38, 301-309.	1.1	2
44	Neuro-Olfactory Regulation and Salivary Actions: A Coordinated Event for Successful Blood-Feeding Behavior of Mosquitoes. , 2020, , .		2
45	Identification and characterization of a new putative c-type lysozyme from malaria vector Anopheles stephensi. Indian Journal of Biochemistry and Biophysics, 2006, 43, 15-9.	0.0	2
46	Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS ONE, 2022, 17, e0264523.	2.5	2
47	Partial genomic organization of ribosomal protein S7 gene from malaria vector Anopheles stephensi. Insect Science, 2007, 14, 101-106.	3.0	1
48	Molecular Dynamics of Mosquito-Plasmodium vivaxInteraction: A Smart Strategy of Parasitism. , 0, , .		1
49	Protein-Protein Interactions in Malaria: Emerging Arena for Future Chemotherapeutics. , 0, , .		0
50	The nucleotide specificity of succinylâ€CoA synthetase of Plasmodium falciparum is not determined by charged gatekeeper residues alone. FEBS Open Bio, 2021, 11, 578-587.	2.3	0
51	Resolving the conflict of mating versus blood feeding: exploring role of quick-to-court gene in the mosquito Anopheles culicifacies. Canadian Journal of Biotechnology, 2017, 1, 101-101.	0.3	0