Jian Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088729/publications.pdf

Version: 2024-02-01

		279798	3	377865
69	1,468	23		34
papers	citations	h-index		g-index
84	84	84		1478
04	07	04		1470
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean. Cell Host and Microbe, 2011, 9, 177-186.	11.0	99
2	Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorganic Chemistry, 2020, 59, 4435-4442.	4.0	98
3	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	4.1	81
4	Boosting the Iodine Adsorption and Radioresistance of Thâ€UiOâ€66 MOFs via Aromatic Substitution. Chemistry - A European Journal, 2021, 27, 1286-1291.	3.3	65
5	Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nature Communications, 2021, 12, 2798.	12.8	55
6	$Th(VO < sub>3 < sub>) < sub>2 < sub> (SeO < sub>3 < sub>) and \\ Ln(VO < sub>3 < sub>) < sub>2 < sub> (IO < sub>3 < sub>) (Ln = Ce, Pr, Nd, Sm, and Eu): unusual cases of aliovalent substitution. Chemical Communications, 2014, 50, 3668-3670.$	4.1	42
7	Comparisons of Plutonium, Thorium, and Cerium Tellurite Sulfates. Inorganic Chemistry, 2013, 52, 4277-4281.	4.0	39
8	Ionothermal and Hydrothermal Flux Syntheses of Five New Uranyl Phosphonates. Crystal Growth and Design, 2014, 14, 228-235.	3.0	39
9	Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China. Science of the Total Environment, 2014, 481, 377-391.	8.0	38
10	Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles. Corrosion Science, 2019, 160, 108174.	6.6	35
11	Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium–Nitrate Example. Journal of the American Chemical Society, 2017, 139, 18003-18008.	13.7	33
12	Mesoporous Zeolitic Imidazolate Framework-67 Nanocrystals on Siliceous Mesocellular Foams for Capturing Radioactive Iodine. ACS Applied Nano Materials, 2020, 3, 5390-5398.	5.0	33
13	Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. Angewandte Chemie - International Edition, 2020, 59, 1878-1883.	13.8	31
14	Cerium(IV) Tellurite Halides [Ce $<$ sub $>$ 2 $<$ /sub $>$ Te $<$ sub $>$ 7 $<$ /sub $>$ 0 $<$ sub $>$ 17 $<$ /sub $>$]X $<$ sub $>$ 2 $<$ /sub $>$ 10083-10085.	0 rgBT /C 4.0	Overlock 10 1 30
15	A New Concept of Radiation Detection Based on a Fluorochromic and Piezochromic Nanocluster. Journal of the American Chemical Society, 2022, 144, 3449-3457.	13.7	29
16	Unusual Coordination for Plutonium(IV), Cerium(IV), and Zirconium(IV) in the Cationic Layered Materials [M2Te4O11]X2 (M = Pu, Ce, Zr; X = Cl, Br). Inorganic Chemistry, 2012, 51, 11949-11954.	4.0	27
17	Chirality and Polarity in the fâ€Block Borates M ₄ [B ₁₆ O ₂₆ (OH) ₄ (H ₂ O) ₃ Cl _{(M=Sm, Eu, Gd, Pu, Am, Cm, and Cf). Chemistry - A European Journal, 2014, 20, 9892-9896.}	4x /sub>]	27
18	A chiral smectic structure assembled from nanosheets and nanorods. Chemical Communications, 2017, 53, 1868-1871.	4.1	27

#	Article	IF	CITATIONS
19	Th ₃ [Th ₆ (OH) ₄ O ₄ (H ₂ O) ₆](SO <sub 10098-10101.<="" 2016,="" 55,="" a="" chemistry,="" inorganic="" microporous="" open-framework="" self-assembled="" sulfate.="" td="" thorium=""><td>>4</td></sub>	>4) _{12< 26}
20	Unexpected structural complexity of thorium coordination polymers and polyoxo cluster built from simple formate ligands. Inorganic Chemistry Frontiers, 2020, 7, 260-269.	6.0	26
21	Challenges in the Search for Magnetic Coupling in 3d/4f Materials: Syntheses, Structures, and Magnetic Properties of the Lanthanide Copper Heterobimetallic Compounds, RE ₂ Cu(TeO ₃) ₂ 4) ₄) ₂ . Chemistry of Materials. 2014. 26. 2187-2194.	6.7	25
22	Achieving UV and X-ray Dual Photochromism in a Metal–Organic Hybrid via Structural Modulation. ACS Applied Materials & Diterfaces, 2021, 13, 2745-2752.	8.0	24
23	Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552.	3.6	23
24	A Large Family of Centrosymmetric and Chiral f-Element-Bearing Iodate Selenates Exhibiting Coordination Number and Dimensional Reductions. Inorganic Chemistry, 2018, 57, 1676-1683.	4.0	23
25	Synthesis of Divalent Europium Borate via in Situ Reductive Techniques. Inorganic Chemistry, 2013, 52, 8099-8105.	4.0	22
26	Thermodynamic description of the constitutive binaries of the NaCl-KCl-UCl3-PuCl3 system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101783.	1.6	22
27	Structure–Property Correlations in the Heterobimetallic 4f/3d Materials Ln ₂ M(TeO ₃) ₂ (SO ₄) (Ln = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho,) Tj ET	Q pl 10.7	7 &4 314 rgB
28	Thermochromism, the Alexandrite Effect, and Dynamic Jahn–Teller Distortions in Ho ₂ Cu(TeO ₃) ₂ (SO ₄) ₂ . Inorganic Chemistry, 2013, 52, 13278-13281.	4.0	20
29	A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chemical Science, 2021, 12, 15833-15842.	7.4	20
30	Why Is Uranyl Formohydroxamate Red?. Inorganic Chemistry, 2015, 54, 5280-5284.	4.0	19
31	Recent advances in the applications of thorium-based metal–organic frameworks and molecular clusters. Dalton Transactions, 2022, 51, 7376-7389.	3.3	19
32	Interpenetration Control in Thorium Metal–Organic Frameworks: Structural Complexity toward lodine Adsorption. Inorganic Chemistry, 2021, 60, 5617-5626.	4.0	17
33	Dimensional and Coordination Number Reductions in a Large Family of Lanthanide Tellurite Sulfates. Inorganic Chemistry, 2014, 53, 8555-8564.	4.0	16
34	In Situ Reduction from Uranyl Ion into a Tetravalent Uranium Trimer and Hexamer Featuring Ion-Exchange Properties and the Alexandrite Effect. Inorganic Chemistry, 2018, 57, 6753-6761.	4.0	16
35	Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation. Dalton Transactions, 2019, 48, 12808-12811.	3.3	16
36	Expansion of the structural diversity of f-element bearing molybdate iodates: synthesis, structures, and optical properties. Dalton Transactions, 2019, 48, 4823-4829.	3.3	16

#	Article	IF	Citations
37	[Ln 6 O 8] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO 4 â^' Sequestration. Advanced Science, 2019, 6, 1900381.	11.2	16
38	Hydrolytically Stable Zr-Based Metal–Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorganic Chemistry, 2022, 61, 7467-7476.	4.0	15
39	The structural evolution and tunable photoluminescence of f-element bearing coordination polymers of the 2,4,6-tri-α-pyridyl-1,3,5-triazine ligand. CrystEngComm, 2019, 21, 5059-5066.	2.6	14
40	Incorporation of Neptunium(VI) into a Uranyl Selenite. Inorganic Chemistry, 2012, 51, 10480-10482.	4.0	13
41	LnV3Te3O15(OH)3·nH2O (Ln = Ce, Pr, Nd, Sm, Eu, Gd; n = 1–2): A New Series of Semiconductors with Mixed-Valent Tellurium (IV,VI) Oxoanions. Inorganic Chemistry, 2014, 53, 9058-9064.	4.0	13
42	Effect of graphite particles in molten LiF-NaF-KF eutectic salt on corrosion behaviour of GH3535 alloy. Corrosion Science, 2020, 168, 108581.	6.6	13
43	Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorganic Chemistry, 2021, 60, 1359-1366.	4.0	13
44	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	3.3	13
45	Straightforward Reductive Routes to Air-Stable Uranium(III) and Neptunium(III) Materials. Inorganic Chemistry, 2014, 53, 7455-7466.	4.0	12
46	Expansion of the Rich Structures and Magnetic Properties of Neptunium Selenites: Soft Ferromagnetism in Np(SeO3)2. Inorganic Chemistry, 2014, 53, 7154-7159.	4.0	12
47	Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology. Inorganic Chemistry, 2017, 56, 14198-14205.	4.0	12
48	Emergence of a thorium–organic framework as a radiation attenuator for selective X-ray dosimetry. Chemical Communications, 2021, 57, 8131-8134.	4.1	12
49	Synthesis, Structure, and Spectroscopy of Two Ternary Uranium(IV) Thiophosphates: UP ₂ S ₉ and UP ₂ S ₇ Containing P ₂ S ₉ <ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉<ahref="mailto:sub>24">9S₉S₉</ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub></ahref="mailto:sub>	4.0	11
50	Investigation of the local structure of molten ThF ₄ â€"LiF and ThF ₄ â€"LiFâ€"BeF ₂ mixtures by high-temperature X-ray absorption spectroscopy and molecular-dynamics simulation. Journal of Synchrotron Radiation, 2019, 26, 1733-1741.	2.4	11
51	Unexpected Roles of Alkali-Metal Cations in the Assembly of Low-Valent Uranium Sulfate Molecular Complexes. Inorganic Chemistry, 2020, 59, 2348-2357.	4.0	11
52	Anionic uranyl oxyfluorides as a bifunctional platform for highly selective ion-exchange and photocatalytic degradation of organic dyes. Dalton Transactions, 2018, 47, 14908-14916.	3.3	10
53	Linking Solution Structures and Energetics: Thorium Nitrate Complexes. Journal of Physical Chemistry B, 2017, 121, 8577-8584.	2.6	9
54	Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions. Npj Materials Degradation, 2021, 5, .	5.8	9

#	Article	IF	CITATIONS
55	Uranium-Induced Changes in Crystal-Field and Covalency Effects of Th4+ in Th1–xUxO2 Mixed Oxides Probed by High-Resolution X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 11404-11413.	4.0	8
56	Emergence of Thorium-Based Polyoxo Clusters as a Platform for Selective X-ray Dosimetry. Inorganic Chemistry, 2021, 60, 18629-18633.	4.0	8
57	Differential interplay between Ce and U on local structures of U1-xCexO2 solid solutions probed by X-ray absorption spectroscopy. Journal of Nuclear Materials, 2019, 515, 238-244.	2.7	6
58	Structural Complexity and Magnetic Orderings in a Large Family of 3d–4f Heterobimetallic Sulfates. Inorganic Chemistry, 2020, 59, 13398-13406.	4.0	6
59	Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO ₄)(H ₂ O) ₄ Cl]Cl·H ₂ O. Inorganic Chemistry, 2018, 57, 6778-6782.	4.0	3
60	Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. Angewandte Chemie, 2020, 132, 1894-1899.	2.0	3
61	Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Transactions, 2021, 50, 14325-14331.	3.3	3
62	Insights into the new 3d–5f heterometallic quaternary fluorides: Synthesis, crystal structures, spectroscopic properties, and thermodynamic stability. Inorganica Chimica Acta, 2019, 487, 362-368.	2.4	2
63	Unusual Heterometallic Cation-Cation Interactions in Uranyl Zinc Germanates. European Journal of Inorganic Chemistry, 2020, 2020, 2182-2185.	2.0	2
64	Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Transactions, 2022, 51, 3041-3045.	3.3	2
65	Thorium copper phosphides: more diverse metal–phosphorus and phosphorus–phosphorus interactions than U analogues. Dalton Transactions, 2017, 46, 12041-12052.	3.3	1
66	Polyoxometalates: [Ln ₆ O ₈] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO ₄ ^{â^²} Sequestration (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970105.	11.2	1
67	Local structure of uranium in polycrystalline α-U2N3+δ film probed by X-ray absorption spectroscopy. Journal of Nuclear Materials, 2020, 542, 152404.	2.7	1
68	Efficiently immobilizing uranium (VI) by oxidized carbon foam. Environmental Science and Pollution Research, 2021, 28, 50471-50479.	5.3	1
69	Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Advances, 2022, 12, 12878-12881.	3.6	1