Scott E Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotype to genotype in Neurospora crassa: Association of the scumbo phenotype with mutations in the gene encoding ceramide C9-methyltransferase. Current Research in Microbial Sciences, 2022, 3, 100117.	1.4	0
2	Major involvement of two laccase genes in conidial pigment biosynthesis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2022, 106, 287-300.	1.7	0
3	Strain Construction for Intracellular Metabolic Pathway Localization in Y. lipolytica. Methods in Molecular Biology, 2021, 2307, 147-157.	0.4	2
4	Production of Biofuels From Biomass by Fungi. , 2021, , 555-576.		1
5	Fusing quantitative-phase imaging with airy light-sheet microscopy. , 2021, , .		0
6	Re-routing of Sugar Catabolism Provides a Better Insight Into Fungal Flexibility in Using Plant Biomass-Derived Monomers as Substrates. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644216.	2.0	4
7	Integration of Proteomics and Metabolomics Into the Design, Build, Test, Learn Cycle to Improve 3-Hydroxypropionic Acid Production in Aspergillus pseudoterreus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 603832.	2.0	12
8	The F-box protein gene <i>exo</i> - <i>1</i> is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
9	Molecular Mechanisms of Plant–Microbe Interactions in the Rhizosphere as Targets for Improving Plant Productivity. Rhizosphere Biology, 2021, , 295-338.	0.4	8
10	Bayesian Inference for Integrating <i>Yarrowia lipolytica</i> Multiomics Datasets with Metabolic Modeling. ACS Synthetic Biology, 2021, 10, 2968-2981.	1.9	4
11	Evidence of the Involvement of a Cyclase Gene in the Biosynthesis of Ochratoxin A in Aspergillus carbonarius. Toxins, 2021, 13, 892.	1.5	11
12	Colonies of the fungus Aspergillus niger are highly differentiated to adapt to local carbon source variation. Environmental Microbiology, 2020, 22, 1154-1166.	1.8	15
13	Grand Challenges in Fungal Biotechnology. Frontiers in Fungal Biology, 2020, 1, .	0.9	1
14	Integrative quantitative-phase and airy light-sheet imaging. Scientific Reports, 2020, 10, 20150.	1.6	10
15	High-Throughput Large-Scale Targeted Proteomics Assays for Quantifying Pathway Proteins in Pseudomonas putida KT2440. Frontiers in Bioengineering and Biotechnology, 2020, 8, 603488.	2.0	10
16	Comparative Genomic Analysis of Ochratoxin A Biosynthetic Cluster in Producing Fungi: New Evidence of a Cyclase Gene Involvement. Frontiers in Microbiology, 2020, 11, 581309.	1.5	19
17	Deletion analysis of the itaconic acid biosynthesis gene cluster components in Aspergillus pseudoterreus ATCC32359. Applied Microbiology and Biotechnology, 2020, 104, 3981-3992.	1.7	10
18	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125

#	Article	IF	CITATIONS
19	101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Studies in Mycology, 2020, 96, 141-153.	4.5	135
20	Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides. Frontiers in Bioengineering and Biotechnology, 2020, 8, 612832.	2.0	25
21	Horizontal Gene Transfer in Fungi. Grand Challenges in Biology and Biotechnology, 2020, , 317-332.	2.4	3
22	Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments. Microbiology Monographs, 2019, , 159-175.	0.3	8
23	Prediction of Metabolite Concentrations, Rate Constants and Post-Translational Regulation of Neurospora Crassa using Maximum Entropy Optimizations and Reinforcement Learning. Biophysical Journal, 2019, 116, 130a-131a.	0.2	0
24	A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PLoS ONE, 2019, 14, e0210243.	1.1	40
25	Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger. Applied Microbiology and Biotechnology, 2018, 102, 1797-1807.	1.7	15
26	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	3.3	126
27	Duplications and losses of genes encoding known elements of the stress defence system of the Aspergilli contribute to the evolution of these filamentous fungi but do not directly influence their environmental stress tolerance. Studies in Mycology, 2018, 91, 23-36.	4.5	21
28	Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Systems, 2018, 7, 613-626.e5.	2.9	93
29	Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. MSphere, 2018, 3, .	1.3	35
30	<i>Dichomitus squalens</i> partially tailors its molecular responses to the composition of solid wood. Environmental Microbiology, 2018, 20, 4141-4156.	1.8	36
31	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	9.4	160
32	Cloning and Expression of Heterologous Cellulases and Enzymes in Aspergillus niger. Methods in Molecular Biology, 2018, 1796, 123-133.	0.4	0
33	Protein hyperproduction in fungi by design. Applied Microbiology and Biotechnology, 2018, 102, 8621-8628.	1.7	19
34	Prediction of Metabolite Concentrations, Rate Constants and Post-Translational Regulation Using Maximum Entropy-Based Simulations with Application to Central Metabolism of Neurospora crassa. Processes, 2018, 6, 63.	1.3	24
35	Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans. BMC Genomics, 2018, 19, 214.	1.2	11
36	A molecular genetic toolbox for Yarrowia lipolytica. Biotechnology for Biofuels, 2017, 10, 2.	6.2	62

#	Article	IF	CITATIONS
37	Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica. MSphere, 2017, 2, .	1.3	29
38	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
39	Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology, 2017, 8, 67-83.	2.0	13
40	Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in <i>Yarrowia lipolytica</i> . MBio, 2017, 8, .	1.8	38
41	A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2017, 2, 17087.	5.9	183
42	Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. Scientific Reports, 2017, 7, 44296.	1.6	71
43	Mycotoxins: A Fungal Genomics Perspective. Methods in Molecular Biology, 2017, 1542, 367-379.	0.4	2
44	Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms. Biomicrofluidics, 2017, 11, 054104.	1.2	4
45	Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials. Physical Biology, 2017, 14, 055003.	0.8	6
46	High resolution visualization and exoâ€proteomics reveal the physiological role of XInR and AraR in plant biomass colonization and degradation by <i>Aspergillus niger</i> . Environmental Microbiology, 2017, 19, 4587-4598.	1.8	6
47	Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to Carbohydrate-Active Enzyme and Transporter Levels. Applied and Environmental Microbiology, 2017, 83,	1.4	22
48	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
49	Thermoascus aurantiacus is an Intriguing Host for the Industrial Production of Cellulases. Current Biotechnology, 2017, 6, 89-97.	0.2	20
50	Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PLoS ONE, 2017, 12, e0189604.	1.1	13
51	Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnology for Biofuels, 2017, 10, 209.	6.2	43
52	Identification of a Classical Mutant in the Industrial Host <i>Aspergillus niger</i> by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3: Genes, Genomes, Genetics, 2016, 6, 193-204.	0.8	65
53	Fungal Ligninolytic Enzymes and Their Applications. Microbiology Spectrum, 2016, 4, .	1.2	19
54	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175

#	Article	IF	CITATIONS
55	The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete. Fungal Biology, 2016, 120, 961-974.	1.1	11
56	Ochratoxin A production by Penicillium thymicola. Fungal Biology, 2016, 120, 1041-1049.	1.1	20
57	Approaches to understanding protein hypersecretion in fungi. Fungal Biology Reviews, 2016, 30, 145-151.	1.9	2
58	Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj Systems Biology and Applications, 2016, 2, 16005.	1.4	141
59	Multimodal microchannel and nanowell-based microfluidic platforms for bioimaging. , 2016, , .		0
60	Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica. BMC Genomics, 2016, 17, 138.	1.2	62
61	The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews, 2016, 80, 205-327.	2.9	194
62	Comparative Genomics, Resequencing and Fast Forward Genetics in Aspergillus and Penicillium. , 2016, , 17-26.		2
63	Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics. Scientific Reports, 2015, 5, 16111.	1.6	28
64	Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29. Genome Announcements, 2015, 3, .	0.8	16
65	Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics, 2015, 16, 326.	1.2	31
66	<i>period</i> -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the <i>Neurospora</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15707-15712.	3.3	37
67	Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene. Applied Microbiology and Biotechnology, 2015, 99, 3103-3113.	1.7	13
68	Genome Sequence and Annotation of Trichoderma parareesei , the Ancestor of the Cellulase Producer Trichoderma reesei. Genome Announcements, 2015, 3, .	0.8	28
69	Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 2015, 3, .	0.8	17
70	Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis. PLoS ONE, 2015, 10, e0123188.	1.1	54
71	Genome Sequence of the Mucoromycotina Fungus Umbelopsis isabellina , an Effective Producer of Lipids. Genome Announcements, 2014, 2, .	0.8	26
72	Correction for Riley et al., Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14959-14959.	3.3	12

#	Article	IF	CITATIONS
73	Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. International Journal of Food Microbiology, 2014, 179, 10-17.	2.1	64
74	Structural analysis of N- and O-glycans using ZIC-HILIC/dialysis coupled to NMR detection. Fungal Genetics and Biology, 2014, 72, 207-215.	0.9	7
75	Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9923-9928.	3.3	595
76	Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Applied Microbiology and Biotechnology, 2013, 97, 269-281.	1.7	67
77	Aspergillus: Genomics of a Cosmopolitan Fungus. Soil Biology, 2013, , 89-126.	0.6	4
78	Return of the Fungi. Industrial Biotechnology, 2013, 9, 328-330.	0.5	0
79	Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genetics and Biology, 2013, 61, 120-132.	0.9	25
80	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	1.1	219
81	Fungi and Industrial Biotechnology – A Special Issue for an Amazing Kingdom. Industrial Biotechnology, 2013, 9, 105-107.	0.5	4
82	Resin-Assisted Enrichment of N-Terminal Peptides for Characterizing Proteolytic Processing. Analytical Chemistry, 2013, 85, 6826-6832.	3.2	24
83	Comparative Genomics Analysis of <i>Trichoderma reesei</i> Strains. Industrial Biotechnology, 2013, 9, 352-367.	0.5	34
84	The Polyketide Synthase Gene <i>pks4</i> of Trichoderma reesei Provides Pigmentation and Stress Resistance. Eukaryotic Cell, 2013, 12, 1499-1508.	3.4	77
85	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	1.5	232
86	Functional Analyses of <i>Trichoderma reesei</i> LAE1 Reveal Conserved and Contrasting Roles of This Regulator. G3: Genes, Genomes, Genetics, 2013, 3, 369-378.	0.8	109
87	Trichoderma and the biorefinery: from plant health to enzymes to biofuel production , 2013, , 222-229.		0
88	Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology (United) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf
89	New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius. Applied and Environmental Microbiology, 2012, 78, 8208-8218.	1.4	99

⁹⁰Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biology,
2012, 116, 318-331.1.150

#	Article	IF	CITATIONS
91	Harnessing glycosylation to improve cellulase activity. Current Opinion in Biotechnology, 2012, 23, 338-345.	3.3	107
92	Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of <i>Aspergillus niger</i> Using Hydrazide Chemistry and Mass Spectrometry. Journal of Proteome Research, 2012, 11, 143-156.	1.8	62
93	A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnology for Biofuels, 2012, 5, 1.	6.2	434
94	The Production of Multiple Small Peptaibol Families by Single 14â€Module Peptide Synthetases in <i>Trichoderma</i> / <i>Hypocrea</i> . Chemistry and Biodiversity, 2012, 9, 499-535.	1.0	66
95	The putative protein methyltransferase LAE1 controls cellulase gene expression in <i>Trichoderma reesei</i> . Molecular Microbiology, 2012, 84, 1150-1164.	1.2	232
96	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	2.4	329
97	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	3.8	594
98	Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-l ³ -pyrone. Fungal Genetics and Biology, 2011, 48, 430-437.	0.9	91
99	Proteome Studies of Filamentous Fungi. Methods in Molecular Biology, 2011, 722, 133-139.	0.4	3
100	Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, 29, 922-927.	9.4	428
101	Sequencing the fungal tree of life. New Phytologist, 2011, 190, 818-821.	3.5	107
102	Novel Hydrophobins from Trichoderma Define a New Hydrophobin Subclass: Protein Properties, Evolution, Regulation and Processing. Journal of Molecular Evolution, 2011, 72, 339-351.	0.8	68
103	Post-genomic approaches to understanding interactions between fungi and their environment. IMA Fungus, 2011, 2, 81-86.	1.7	11
104	The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science, 2011, 333, 762-765.	6.0	512
105	Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2011, 1, 303-316.	0.8	68
106	Anaerobic fungi: Neocallimastigomycota. IMA Fungus, 2010, 1, 181-185.	1.7	39
107	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	13.7	1,442
108	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010, 28, 957-963.	9.4	490

#	Article	IF	CITATIONS
109	Tracking the roots of cellulase hyperproduction by the fungus <i>Trichoderma reesei</i> using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16151-16156.	3.3	190
110	Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 2009, 10, 567.	1.2	141
111	Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics, 2009, 10, 61.	1.2	35
112	Fungal glycoside hydrolases for saccharification of lignocellulose: outlook for new discoveries fueled by genomics and functional studies. Cellulose, 2009, 16, 687-697.	2.4	32
113	Selection to sequence: opportunities in fungal genomics. Environmental Microbiology, 2009, 11, 2955-2958.	1.8	9
114	Genome, transcriptome, and secretome analysis of wood decay fungus <i>Postia placenta</i> supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1954-1959.	3.3	530
115	Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genetics and Biology, 2009, 46, S153-S160.	0.9	87
116	Essential pathway identification: from <i>in silico</i> analysis to potential antifungal targets in <i>Aspergillus fumigatus</i> . Medical Mycology, 2009, 47, S80-S87.	0.3	20
117	Proteomics for Validation of Automated Gene Model Predictions. Methods in Molecular Biology, 2009, 492, 447-452.	0.4	4
118	Fungal genome sequencing and bioenergy. Fungal Biology Reviews, 2008, 22, 1-5.	1.9	27
119	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea) Tj ETQq1	1	.4 rgBT /Over
120	Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evolutionary Biology, 2008, 8, 4.	3.2	69
121	Mixed-Effects Statistical Model for Comparative LCâ^'MS Proteomics Studies. Journal of Proteome Research, 2008, 7, 1209-1217.	1.8	44
122	Hydrogenosomes of Anaerobic Chytrids: An Alternative Way to Adapt to Anaerobic Environments. Microbiology Monographs, 2008, , 147-162.	0.3	10
123	Genetic and Genomic Dissection of the Cochliobolus heterostrophus Tox1 Locus Controlling Biosynthesis of the Polyketide Virulence Factor Tâ€ŧoxin. Advances in Genetics, 2007, 57, 219-261.	0.8	56
124	An Overview of the Genus Aspergillus. Mycology, 2007, , 3-13.	0.5	16
125	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	6.0	837
126	What can comparative genomics tell us about species concepts in the genus Aspergillus?. Studies in Mycology, 2007, 59, 11-17.	4.5	83

1

#	Article	IF	CITATIONS
127	Aspergillus nigergenomics: Past, present and into the future. Medical Mycology, 2006, 44, 17-21.	0.3	200
128	Biomarker Candidate Identification inYersiniapestisUsing Organism-Wide Semiquantitative Proteomics. Journal of Proteome Research, 2006, 5, 3008-3017.	1.8	42
129	Two Polyketide Synthase-Encoding Genes Are Required for Biosynthesis of the Polyketide Virulence Factor, T-toxin, by Cochliobolus heterostrophus. Molecular Plant-Microbe Interactions, 2006, 19, 139-149.	1.4	135
130	Activation of an AP1-Like Transcription Factor of the Maize Pathogen Cochliobolus heterostrophus in Response to Oxidative Stress and Plant Signals. Eukaryotic Cell, 2005, 4, 443-454.	3.4	94
131	Genetic Interaction Between Integrins and moleskin, a Gene Encoding a Drosophila Homolog of Importin-7. Genetics, 2002, 162, 285-296.	1.2	27
132	A Cell Signal Pathway Involving Laminin-5, α3β1 Integrin, and Mitogen-activated Protein Kinase Can Regulate Epithelial Cell Proliferation. Molecular Biology of the Cell, 1999, 10, 259-270.	0.9	146
133	Structure and Function of Hemidesmosomes: More Than Simple Adhesion Complexes. Journal of Investigative Dermatology, 1999, 112, 411-418.	0.3	513
134	The PS Integrins Are Required for a Regulatory Event during Drosophila Wing Morphogenesisa. Annals of the New York Academy of Sciences, 1998, 857, 99-109.	1.8	10
135	Laminin-5 and modulation of keratin cytoskeleton arrangement in FG pancreatic carcinoma cells: Involvement of IFAP300 and evidence that laminin-5/cell interactions correlate with a dephosphorylation of α6A integrin. , 1997, 37, 271-286.		21
136	Morphogenetic Effects of Soluble Laminin-5 on Cultured Epithelial Cells and Tissue Explants. Experimental Cell Research, 1996, 228, 262-270.	1.2	66
137	Molecular genetic studies of a human epidermal autoantigen (the 180-kD bullous pemphigoid) Tj ETQq1 1 0.784	314 rgBT / 2.3	Overlock 10
207	evidence for an interaction between BP180 and alpha 6 integrin Journal of Cell Biology, 1995, 130, 117-125.		101
138	Hemidesmosomes: Extracellular Matrix/Intermediate Filament Connectors. Experimental Cell Research, 1994, 213, 1-11.	1.2	90
139	Genome and proteome analysis of industrial fungi. , 0, , 3-9.		0

140 Genomes to Proteomes. , 0, , 21-45.