Kee Sung Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088244/publications.pdf

Version: 2024-02-01

101 papers 8,986 citations

76196 40 h-index 93 g-index

104 all docs

104 docs citations

104 times ranked 9519 citing authors

#	Article	IF	CITATIONS
1	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, $2016, 1, .$	19.8	2,186
2	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	11.1	761
3	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	10.2	662
4	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	19.8	557
5	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	19.8	326
6	Joint Charge Storage for Highâ€Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced Materials, 2019, 31, e1900567.	11.1	299
7	Enabling room temperature sodium metal batteries. Nano Energy, 2016, 30, 825-830.	8.2	248
8	Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–lodine Battery. ACS Energy Letters, 2017, 2, 2674-2680.	8.8	207
9	Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304, 123-134.	3.1	189
10	Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy, 2017, 40, 607-617.	8.2	160
11	Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials, 2018, 28, 1707234.	7.8	143
12	Highly active electrolytes for rechargeable Mg batteries based on a [Mg ₂ (\hat{l} /4-Cl) ₂] ²⁺ cation complex in dimethoxyethane. Physical Chemistry Chemical Physics, 2015, 17, 13307-13314.	1.3	126
13	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	4.5	122
14	Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy, 2015, 12, 750-759.	8.2	121
15	Mechanism of Formation of Li ₇ P ₃ S ₁₁ Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials, 2018, 30, 990-997.	3.2	118
16	Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2016, 26, 3059-3066.	7.8	117
17	Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions. Chemistry of Materials, 2017, 29, 3375-3379.	3.2	117
18	Lithiumâ€Pretreated Hard Carbon as Highâ€Performance Sodiumâ€Ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1801441.	10.2	105

#	Article	IF	CITATIONS
19	Efficient CO ₂ Capture by Porous, Nitrogenâ€Doped Carbonaceous Adsorbents Derived from Taskâ€Specific Ionic Liquids. ChemSusChem, 2012, 5, 1912-1917.	3.6	92
20	Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2921-2930.	8.8	89
21	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83
22	Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10503-10514.	4.0	77
23	Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4290-4295.	4.0	74
24	New Tricks for Old Molecules: Development and Application of Porous Nâ€doped, Carbonaceous Membranes for CO ₂ Separation. Advanced Materials, 2013, 25, 4152-4158.	11.1	71
25	Optimum lithium-ion conductivity in cubic Li7â^'xLa3Hf2â^'xTaxO12. Journal of Power Sources, 2012, 209, 184-188.	4.0	70
26	Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites. ACS Catalysis, 2017, 7, 3489-3500.	5.5	70
27	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 12999-13006.	7.2	70
28	Restricting the Solubility of Polysulfides in Liâ€S Batteries Via Electrolyte Salt Selection. Advanced Energy Materials, 2016, 6, 1600160.	10.2	66
29	Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters. Advanced Functional Materials, 2016, 26, 3446-3453.	7.8	65
30	Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes. Chemical Communications, 2016, 52, 5379-5382.	2.2	60
31	Heat treatment and potential cycling effects on surface morphology, particle size, and catalytic activity of Pt/C catalysts studied by 13C NMR, TEM, XRD and CV. Electrochemistry Communications, 2007, 9, 317-324.	2.3	59
32	Dynamic and Structural Properties of Room-Temperature Ionic Liquids near Silica and Carbon Surfaces. Langmuir, 2013, 29, 9744-9749.	1.6	59
33	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters, 2021, 6, 387-394.	8.8	58
34	Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions. Advanced Energy Materials, 2018, 8, 1800590.	10.2	55
35	Structure and Dynamics of Polysulfide Clusters in a Nonaqueous Solvent Mixture of 1,3-Dioxolane and 1,2-Dimethoxyethane. Chemistry of Materials, 2019, 31, 2308-2319.	3.2	54
36	Controlled Synthesis of Sulfur-Rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-Life, High-Rate Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29565-29573.	4.0	51

#	Article	IF	Citations
37	Probing the Sorption of Perfluorooctanesulfonate Using Mesoporous Metal–Organic Frameworks from Aqueous Solutions. Inorganic Chemistry, 2019, 58, 8339-8346.	1.9	51
38	Physicochemical properties of imidazolium-derived ionic liquids with different C-2 substitutions. Physical Chemistry Chemical Physics, 2011, 13, 21503.	1.3	48
39	Synthesis of Porous, Nitrogenâ€Doped Adsorption/Diffusion Carbonaceous Membranes for Efficient CO ₂ Separation. Macromolecular Rapid Communications, 2013, 34, 452-459.	2.0	46
40	Reversible Electrochemical Interface of Mg Metal and Conventional Electrolyte Enabled by Intermediate Adsorption. ACS Energy Letters, 2020, 5, 200-206.	8.8	44
41	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2014, 4, 1301368.	10.2	43
42	Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity. Energy Storage Materials, 2019, 21, 85-96.	9.5	43
43	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	10.2	43
44	Rotational and Translational Dynamics of Rhodamine 6G in a Pyrrolidinium Ionic Liquid: A Combined Time-Resolved Fluorescence Anisotropy Decay and NMR Study. Journal of Physical Chemistry B, 2012, 116, 7883-7890.	1.2	37
45	Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica As a Function of Pore Filling. Journal of Physical Chemistry C, 2013, 117, 15754-15762.	1.5	37
46	Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals. Advanced Materials, 2016, 28, 9301-9307.	11.1	36
47	Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries. Chemistry of Materials, 2017, 29, 9023-9029.	3.2	35
48	Electrode Edge Effects and the Failure Mechanism of Lithiumâ€Metal Batteries. ChemSusChem, 2018, 11, 3821-3828.	3.6	35
49	Enabling Ether-Based Electrolytes for Long Cycle Life of Lithium-Ion Batteries at High Charge Voltage. ACS Applied Materials & Diterfaces, 2020, 12, 54893-54903.	4.0	35
50	Evaluating Transport Properties and Ionic Dissociation of LiPF ₆ in Concentrated Electrolyte. Journal of the Electrochemical Society, 2017, 164, A2434-A2440.	1.3	32
51	Deep eutectic solvent-based polymer electrolyte for solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 70, 363-372.	7.1	32
52	A Low-Temperature Crossover in Water Dynamics in an Aqueous LiCl Solution: Diffusion Probed by Neutron Spinâ [^] Echo and Nuclear Magnetic Resonance. Journal of Physical Chemistry B, 2010, 114, 16737-16743.	1,2	30
53	Role of Solvent Rearrangement on Mg ²⁺ Solvation Structures in Dimethoxyethane Solutions using Multimodal NMR Analysis. Journal of Physical Chemistry Letters, 2020, 11, 6443-6449.	2.1	27
54	Observation of Methanol Behavior in Fuel Cells Inâ€Situ by NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 3842-3845.	7.2	26

#	Article	IF	CITATIONS
55	Origin of Unusual Acidity and Li ⁺ Diffusivity in a Series of Water-in-Salt Electrolytes. Journal of Physical Chemistry B, 2020, 124, 5284-5291.	1.2	26
56	Cotton Fiber-Based Sorbents for Treating Crude Oil Spills. ACS Omega, 2020, 5, 13894-13901.	1.6	25
57	A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy, 2020, 76, 105041.	8.2	25
58	Diffusional motion of redox centers in carbonate electrolytes. Journal of Chemical Physics, 2014, 141, 104509.	1.2	24
59	Controlling Ion Coordination Structure and Diffusion Kinetics for Optimized Electrode-Electrolyte Interphases and High-Performance Si Anodes. Chemistry of Materials, 2020, 32, 8956-8964.	3.2	24
60	Lithium Insertion Mechanism in Iron Fluoride Nanoparticles Prepared by Catalytic Decomposition of Fluoropolymer. ACS Applied Energy Materials, 2019, 2, 1832-1843.	2.5	21
61	Sulfone-based electrolytes for high energy density lithium-ion batteries. Journal of Power Sources, 2022, 527, 231171.	4.0	21
62	Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research. Chemistry of Materials, 2021, 33, 8562-8590.	3.2	20
63	Adsorption and Thermal Decomposition of Electrolytes on Nanometer Magnesium Oxide: An in Situ 13C MAS NMR Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38689-38696.	4.0	19
64	Solvation Structure and Dynamics of Mg(TFSI) < sub > 2 < /sub > Aqueous Electrolyte. Energy and Environmental Materials, 2022, 5, 295-304.	7.3	19
65	Preferential Solvation of an Asymmetric Redox Molecule. Journal of Physical Chemistry C, 2016, 120, 27834-27839.	1.5	18
66	Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation. Chemical Communications, 2016, 52, 11919-11922.	2.2	17
67	Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents. Journal of Physical Chemistry C, 2021, 125, 6005-6012.	1.5	17
68	Quantifying Species Populations in Multivalent Borohydride Electrolytes. Journal of Physical Chemistry B, 2021, 125, 3644-3652.	1.2	17
69	Rotational and Translational Dynamics of <i>N</i> Butyl- <i>N</i> -methylpiperidinium Trifluoromethanesulfonimide Ionic Liquids Studied by NMR and MD Simulations. Journal of Physical Chemistry C, 2012, 116, 20779-20786.	1.5	16
70	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13109-13116.	1.6	16
71	²⁷ Al Pulsed Field Gradient, Diffusion–NMR Spectroscopy of Solvation Dynamics and Ion Pairing in Alkaline Aluminate Solutions. Journal of Physical Chemistry B, 2018, 122, 10907-10912.	1.2	15
72	Vortex structure and dynamics in YNi2B2Csingle crystal by 11B NMR. Physical Review B, 2000, 62, 123-126.	1.1	14

#	Article	IF	CITATIONS
73	Probing Conformational Evolution and Associated Dynamics of Mg(N(SO ₂ CF ₃) ₂) ₂ ·Dimethoxyethane Adduct Using Solid-State ¹⁹ F and ¹ H NMR. Journal of Physical Chemistry C, 2020, 124, 4999-5008.	1.5	13
74	Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 674-686.	1.3	13
75	Influence of metal cleaning on the particle size and surface morphology of platinum black studied by NMR, TEM and CV techniques. Electrochimica Acta, 2001, 47, 519-523.	2.6	12
76	Metal Particle Size Effects and Metal-Support Interaction in Electrochemically Treated Pt/C Catalysts Investigated by [sup 13]C NMR. Journal of the Electrochemical Society, 2005, 152, J131.	1.3	12
77	Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields. Journal of Chemical Physics, 2015, 142, 224502.	1.2	12
78	Impact of ionic liquid on lithium ion battery with a solid poly(ionic liquid) pentablock terpolymer as electrolyte and separator. Polymer, 2020, 209, 122975.	1.8	11
79	Relaxation mechanisms for63,65Cunuclear quadrupole resonance in Zn-dopedYBa2Cu3O7. Physical Review B, 1999, 59, 11217-11220.	1.1	9
80	Evolution of Ion–Ion Interactions and Structures in Smectic Ionic Liquid Crystals. Journal of Physical Chemistry C, 2019, 123, 20547-20557.	1,5	8
81	Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25534-25544.	4.0	8
82	Role of a Multivalent Ion–Solvent Interaction on Restricted Mg ²⁺ Diffusion in Dimethoxyethane Electrolytes. Journal of Physical Chemistry B, 2021, 125, 12574-12583.	1.2	7
83	Microsized Pore Structure Determination in EPDM Rubbers Using High-Pressure ¹²⁹ Xe NMR Techniques. Journal of Physical Chemistry B, 2022, , .	1.2	6
84	Suppression of antiferromagnetic spin fluctuation in Zn-substituted YBa2Cu3O7. Physica C: Superconductivity and Its Applications, 1999, 320, 245-252.	0.6	5
85	Lean Electrolyte Batteries: Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition (Adv. Funct. Mater. 38/2018). Advanced Functional Materials, 2018, 28, 1870275.	7.8	5
86	Enhanced Capacities of Mixed Fatty Acid-Modified Sawdust Aggregators for Remediation of Crude Oil Spill. ACS Omega, 2019, 4, 412-420.	1.6	5
87	Concentration-Dependent Solvation Structure and Dynamics of Aqueous Sulfuric Acid Using Multinuclear NMR and DFT. Journal of Physical Chemistry B, 2021, 125, 5089-5099.	1.2	5
88	Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. Jacs Au, 2022, 2, 917-932.	3.6	5
89	Vortex dynamics in YNi2B2C single crystal by 11B NMR. International Journal of Modern Physics B, 1999, 13, 3682-3687.	1.0	4
90	An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Nature Computational Science, 2022, 2, 112-122.	3.8	4

#	Article	IF	CITATIONS
91	Subtle changes in hydrogen bond orientation result in glassification of carbon capture solvents. Physical Chemistry Chemical Physics, 2020, 22, 19009-19021.	1.3	3
92	Halide sublattice dynamics drive Li-ion transport in antiperovskites. Journal of Materials Chemistry A, 2022, 10, 15731-15742.	5.2	3
93	11B NMR study of TbNi2B2C. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 272-274.	1.0	2
94	13C NMR Study of Vortex Dynamics in LuNi2B2C. International Journal of Modern Physics B, 2003, 17, 3387-3391.	1.0	1
95	Enhanced local density of states at the Fermi level of the surface platinum in carbon-supported platinum particles by Nafion ionomer. Electrochemistry Communications, 2009, 11, 466-468.	2.3	1
96	Aqueous Dualâ€ion Batteries: Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€ion Batteries (Adv. Energy Mater. 41/2020). Advanced Energy Materials, 2020, 10, 2070169.	10.2	1
97	63,65Cu NQR study of Zn and Ni doped YBa2Cu3O7. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2123-2124.	0.6	0
98	Local field distribution in YNi2B2C superconductor. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2137-2138.	0.6	0
99	Carbon Membranes: New Tricks for Old Molecules: Development and Application of Porous Nâ€doped, Carbonaceous Membranes for CO ₂ Separation (Adv. Mater. 30/2013). Advanced Materials, 2013, 25, 4200-4200.	11.1	0
100	1H NMR Measurements of the Phase Transition of (NH4)3H(SO4)2 Single Crystals. Journal of the Korean Physical Society, 2008, 52, 427-430.	0.3	0
101	One-Pot Process in Scalable Bath for Water-Dispersed ZnS Nanocrystals with the Tailored Size. Journal of Nanoscience and Nanotechnology, 2017, 17, 2943-2950.	0.9	O