Joseph A Brzezinski Iv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Developmental Biology, 2022, 488, 131-150.	2.0	3
2	Initiation of <i>Otx2</i> expression in the developing mouse retina requires a unique enhancer and either <i>Ascl1</i> or <i>Neurog2</i> activity. Development (Cambridge), 2021, 148, .	2.5	16
3	Simultaneous deletion of <i>Prdm1</i> and <i>Vsx2</i> enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development (Cambridge), 2020, 147, .	2.5	22
4	Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Developmental Biology, 2020, 464, 111-123.	2.0	17
5	Aspirin inhibits TGFβ2-induced epithelial to mesenchymal transition of lens epithelial cells: selective acetylation of K56 and K122 in histone H3. Biochemical Journal, 2020, 477, 75-97.	3.7	10
6	"Biology of the Eye,―A Novel Multiformat Translational Elective for Medical Students. Journal of Academic Ophthalmology (2017), 2019, 11, e30-e35.	0.5	0
7	Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Developmental Biology, 2019, 453, 155-167.	2.0	19
8	Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Developmental Biology, 2018, 434, 149-163.	2.0	19
9	Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development. Glia, 2017, 65, 1697-1716.	4.9	71
10	Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS ONE, 2017, 12, e0176905.	2.5	18
11	The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina. , 2017, 58, 5421.		15
12	<i>Gsg1</i> , <i>Trnp1</i> , and <i>Tmem215</i> Mark Subpopulations of Bipolar Interneurons in the Mouse Retina. , 2017, 58, 1137.		14
13	DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements. Epigenetics and Chromatin, 2015, 8, 8.	3.9	60
14	Photoreceptor cell fate specification in vertebrates. Development (Cambridge), 2015, 142, 3263-3273.	2.5	122
15	Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Human Molecular Genetics, 2014, 23, 5087-5101.	2.9	21
16	Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Developmental Biology, 2013, 384, 194-204.	2.0	41
17	Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit. Molecular and Cellular Neurosciences, 2013, 54, 108-120.	2.2	18
18	Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Developmental Biology, 2012, 365, 395-413.	2.0	125

Joseph A Brzezinski Iv

#	Article	IF	CITATIONS
19	Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nature Neuroscience, 2011, 14, 578-586.	14.8	139
20	Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development (Cambridge), 2011, 138, 3519-3531.	2.5	121
21	Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development (Cambridge), 2010, 137, 619-629.	2.5	132
22	Math5 expression and function in the central auditory system. Molecular and Cellular Neurosciences, 2008, 37, 153-169.	2.2	61
23	Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3890-3895.	7.1	310
24	Loss of Circadian Photoentrainment and Abnormal Retinal Electrophysiology inMath5Mutant Mice. , 2005, 46, 2540.		56
25	<i>Math5</i> is required for retinal ganglion cell and optic nerve formation. Development (Cambridge), 2001, 128, 2497-2508.	2.5	413