Peter M Burgers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086074/publications.pdf

Version: 2024-02-01

49 papers

2,259 citations

279798 23 h-index 276875
41
g-index

52 all docs 52 docs citations

52 times ranked 2151 citing authors

#	Article	IF	CITATIONS
1	RNase H2-Initiated Ribonucleotide Excision Repair. Molecular Cell, 2012, 47, 980-986.	9.7	284
2	Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases and REV1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18361-18366.	7.1	219
3	Idling by DNA polymerase maintains a ligatable nick during lagging-strand DNA replication. Genes and Development, 2004, 18, 2764-2773.	5.9	184
4	A four-subunit DNA polymerase \hat{I}^q complex containing Pol \hat{I}' accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Research, 2012, 40, 11618-11626.	14.5	164
5	Eukaryotic DNA polymerase ζ. DNA Repair, 2015, 29, 47-55.	2.8	118
6	The Unstructured C-Terminal Tail of the 9-1-1 Clamp Subunit Ddc1 Activates Mec1/ATR via Two Distinct Mechanisms. Molecular Cell, 2009, 36, 743-753.	9.7	115
7	Flexibility of Eukaryotic Okazaki Fragment Maturation through Regulated Strand Displacement Synthesis. Journal of Biological Chemistry, 2008, 283, 34129-34140.	3.4	114
8	Yeast DNA Replication Protein Dpb11 Activates the Mec1/ATR Checkpoint Kinase. Journal of Biological Chemistry, 2008, 283, 35853-35859.	3.4	102
9	Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes and Development, 2013, 27, 313-321.	5.9	100
10	Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nature Structural and Molecular Biology, 2016, 23, 402-408.	8.2	86
11	Errorâ€free and mutagenic processing of topoisomerase 1â€provoked damage at genomic ribonucleotides. EMBO Journal, 2015, 34, 1259-1269.	7.8	67
12	Oxidative DNA damage stalls the human mitochondrial replisome. Scientific Reports, 2016, 6, 28942.	3.3	59
13	Molecular basis of aflatoxin-induced mutagenesis—role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis, 2014, 35, 1461-1468.	2.8	47
14	Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nature Structural and Molecular Biology, 2015, 22, 291-297.	8.2	45
15	Error-prone Replication Bypass of the Primary Aflatoxin B1 DNA Adduct, AFB1-N7-Gua. Journal of Biological Chemistry, 2014, 289, 18497-18506.	3.4	44
16	Mechanism of Lagging-Strand DNA Replication in Eukaryotes. Advances in Experimental Medicine and Biology, 2017, 1042, 117-133.	1.6	44
17	The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization. Journal of Biological Chemistry, 2016, 291, 13436-13447.	3.4	35
18	Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase \hat{l} . Nucleic Acids Research, 2016, 44, 3811-3819.	14.5	33

#	Article	IF	Citations
19	Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes. Nucleic Acids Research, 2019, 47, 8595-8605.	14.5	33
20	Activation of Tel1ATM kinase requires Rad50 ATPase and long nucleosome-free DNA but no DNA ends. Journal of Biological Chemistry, 2019, 294, 10120-10130.	3.4	30
21	Regulation of yeast DNA polymerase Î'-mediated strand displacement synthesis by 5′-flaps. Nucleic Acids Research, 2015, 43, 4179-4190.	14.5	29
22	Cryo-EM Structure of Nucleotide-Bound Tel1ATM Unravels the Molecular Basis of Inhibition and Structural Rationale for Disease-Associated Mutations. Structure, 2020, 28, 96-104.e3.	3.3	28
23	Yet another job for Dna2: Checkpoint activation. DNA Repair, 2015, 32, 17-23.	2.8	27
24	PCNA accelerates the nucleotide incorporation rate by DNA polymerase \hat{l} . Nucleic Acids Research, 2019, 47, 1977-1986.	14.5	27
25	Yeast Exonuclease 5 Is Essential for Mitochondrial Genome Maintenance. Molecular and Cellular Biology, 2010, 30, 1457-1466.	2.3	22
26	Human Exonuclease 5 Is a Novel Sliding Exonuclease Required for Genome Stability. Journal of Biological Chemistry, 2012, 287, 42773-42783.	3.4	21
27	Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair, 2014, 18, 63-67.	2.8	20
28	Delivering nonidentical twins. Nature Structural and Molecular Biology, 2014, 21, 649-651.	8.2	19
29	The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1ATM kinase. Journal of Biological Chemistry, 2019, 294, 18846-18852.	3.4	19
30	Probing the Mec1ATR Checkpoint Activation Mechanism with Small Peptides. Journal of Biological Chemistry, 2016, 291, 393-401.	3.4	18
31	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. PLoS Genetics, 2020, 16, e1008422.	3.5	17
32	Mechanism of auto-inhibition and activation of Mec1ATR checkpoint kinase. Nature Structural and Molecular Biology, 2021, 28, 50-61.	8.2	17
33	Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 <i>in vitro</i> and <i>in vivo</i> . Nucleic Acids Research, 2016, 44, 7714-7721.	14.5	15
34	Pif1, RPA, and FEN1 modulate the ability of DNA polymerase \hat{l} to overcome protein barriers during DNA synthesis. Journal of Biological Chemistry, 2020, 295, 15883-15891.	3.4	15
35	Bypass of DNA interstrand crosslinks by a Rev1–DNA polymerase ζ complex. Nucleic Acids Research, 2020, 48, 8461-8473.	14.5	13
36	Proficient Replication of the Yeast Genome by a Viral DNA Polymerase. Journal of Biological Chemistry, 2016, 291, 11698-11705.	3.4	7

#	Article	IF	Citations
37	Novel insights into the mechanism of cell cycle kinases Mec1(ATR) and Tel1(ATM). Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 441-454.	5.2	7
38	Solution to the 50-year-old Okazaki-fragment problem. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3358-3360.	7.1	6
39	The roles of fission yeast exonuclease 5 in nuclear and mitochondrial genome stability. DNA Repair, 2019, 83, 102720.	2.8	3
40	The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe–S cluster in DNA polymerase δ. Nucleic Acids Research, 2021, 49, 5623-5636.	14.5	3
41	Arthur Kornberg (1918–2007). Molecular Cell, 2007, 28, 530-532.	9.7	2
42	The Ddc1 checkpoint clamp subunit activates Mec1 kinase during the DNA damage checkpoint. FASEB Journal, 2008, 22, 246.1.	0.5	0
43	Molecular mechanisms underlying aflatoxinâ€induced mutagenesis. FASEB Journal, 2013, 27, lb78.	0.5	0
44	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
45	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. , 2020, 16, e1008422.		0
46	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
47	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. , 2020, 16, e1008422.		0
48	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
49	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0