
Claudia Rossig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SIRPα-specific monoclonal antibody enables antibody-dependent phagocytosis of neuroblastoma cells. Cancer Immunology, Immunotherapy, 2022, 71, 71-83.	4.2	11
2	Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis. Blood Advances, 2022, 6, 1004-1014.	5.2	22
3	Targeted siRNA nanocarrier: a platform technology for cancer treatment. Oncogene, 2022, 41, 2210-2224.	5.9	16
4	Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nature Communications, 2022, 13, 1544.	12.8	9
5	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	4.8	20
6	CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia, 2022, 36, 1525-1532.	7.2	27
7	Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial. Leukemia, 2022, 36, 1516-1524.	7.2	21
8	Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR). International Journal of Molecular Sciences, 2022, 23, 4920.	4.1	2
9	The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers, 2022, 14, 2177.	3.7	2
10	SS18-SSX drives CREB activation in synovial sarcoma. Cellular Oncology (Dordrecht), 2022, 45, 399-413.	4.4	2
11	A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood, 2021, 137, 1582-1590.	1.4	48
12	Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. Journal of Fungi (Basel, Switzerland), 2021, 7, 186.	3.5	18
13	Hepatic sinusoidal obstruction syndrome and short-term application of 6-thioguanine in pediatric acute lymphoblastic leukemia. Leukemia, 2021, 35, 2650-2657.	7.2	13
14	Extracorporeal Membrane Oxygenation in Children With Cancer or Hematopoietic Cell Transplantation: Single-Center Experience in 20 Consecutive Patients. Frontiers in Oncology, 2021, 11, 664928.	2.8	3
15	Surface expression of the immunotherapeutic target <scp>G_{D2}</scp> in osteosarcoma depends on cell confluency. Cancer Reports, 2021, 4, e1394.	1.4	6
16	HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers, 2021, 13, 2857.	3.7	11
17	Anti-CD19 CARs displayed at the surface of lentiviral vector particles promote transduction of target-expressing cells. Molecular Therapy - Methods and Clinical Development, 2021, 21, 42-53.	4.1	5
18	A Study of Regulatory Challenges of Pediatric Oncology Phase I/II Trial Submissions and Guidance on Protocol Development. Clinical Pharmacology and Therapeutics, 2021, 110, 1025-1037.	4.7	4

#	Article	IF	CITATIONS
19	Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA-JMML-001 trial. Blood Advances, 2021, 5, 2901-2908.	5.2	29
20	Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML. Blood Advances, 2021, 5, 4413-4421.	5.2	9
21	Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncology, The, 2021, 22, 1312-1321.	10.7	50
22	Titratable Pharmacological Regulation of CAR T Cells Using Zinc Finger-Based Transcription Factors. Cancers, 2021, 13, 4741.	3.7	7
23	Generation of an NFκB-Driven Alpharetroviral "All-in-One―Vector Construct as a Potent Tool for CAR NK Cell Therapy. Frontiers in Immunology, 2021, 12, 751138.	4.8	11
24	A Phase I Open Label Dose Escalation Study of MB-CART19.1 in Relapsed and Refractory CD19+ B Cell Malignancies, Interim Preliminary Results in Pediatric ALL, Adult ALL Including CLL Cohorts. Blood, 2021, 138, 3836-3836.	1.4	0
25	Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia, 2020, 34, 151-166.	7.2	53
26	Epidemiology, utilisation of healthcare resources and outcome of invasive fungal diseases following paediatric allogeneic haematopoietic stem cell transplantation. Mycoses, 2020, 63, 172-180.	4.0	15
27	Focal adhesion kinase confers proâ€migratory and antiapoptotic properties and is a potential therapeutic target in Ewing sarcoma. Molecular Oncology, 2020, 14, 248-260.	4.6	12
28	Assessment of treatment responses in children and adolescents with Ewing sarcoma with metabolic tumor parameters derived from 18F-FDG-PET/CT and circulating tumor DNA. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1564-1575.	6.4	14
29	VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatric Blood and Cancer, 2020, 67, e28313.	1.5	24
30	Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: results of the RIALTO trial, an expanded access study. Blood Cancer Journal, 2020, 10, 77.	6.2	65
31	Design and Characterization of an "All-in-One―Lentiviral Vector System Combining Constitutive Anti-GD2 CAR Expression and Inducible Cytokines. Cancers, 2020, 12, 375.	3.7	68
32	Synovial sarcoma disease characteristics and primary tumor sites differ between patient age groups: a report of the Cooperative Weichteilsarkom Studiengruppe (CWS). Journal of Cancer Research and Clinical Oncology, 2020, 146, 953-960.	2.5	10
33	Pathological Fracture and Prognosis of High-Grade Osteosarcoma of the Extremities: An Analysis of 2,847 Consecutive Cooperative Osteosarcoma Study Group (COSS) Patients. Journal of Clinical Oncology, 2020, 38, 823-833.	1.6	45
34	A Phase II Study of Single-Agent Inotuzumab Ozogamicin in Pediatric CD22-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of the ITCC-059 Study. Blood, 2020, 136, 8-9.	1.4	10
35	Blinatumomab in Children with Relapsed or Refractory B-Precursor Acute Lymphoblastic Leukemia (R/R-ALL): Final Results of 110 Patients Treated in an Expanded Access Study (RIALTO). Blood, 2020, 136, 24-25.	1.4	2
36	Safety and Efficacy of CD19 CAR T-Cells for Pediatric Relapsed Acute Lymphoblastic Leukemia with Active CNS Involvement. Blood, 2020, 136, 1-1.	1.4	2

#	Article	IF	CITATIONS
37	Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin-Frankfurt-MA¼nster study group. Haematologica, 2019, 104, 120-127.	3.5	38
38	Epidemiology and management burden of invasive fungal infections after autologous hematopoietic stem cell transplantation: 10â€year experience at a European Pediatric Cancer Center. Mycoses, 2019, 62, 954-960.	4.0	9
39	CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing. BMC Cancer, 2019, 19, 895.	2.6	40
40	Requirement for YAP1 signaling in myxoid liposarcoma. EMBO Molecular Medicine, 2019, 11, .	6.9	25
41	EZH2 Inhibition in Ewing Sarcoma Upregulates GD2 Expression for Targeting with Gene-Modified T Cells. Molecular Therapy, 2019, 27, 933-946.	8.2	69
42	SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma. Clinical Cancer Research, 2019, 25, 3718-3731.	7.0	36
43	Cytomegalovirus retinitis in children and adolescents with acute leukemia following allogeneic hematopoietic stem cell transplantation. Transplant Infectious Disease, 2019, 21, e13089.	1.7	8
44	Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma. Molecular Cancer Therapeutics, 2019, 18, 834-844.	4.1	28
45	Prevalence of the Hippo Effectors YAP1/TAZ in Tumors of Soft Tissue and Bone. Scientific Reports, 2019, 9, 19704.	3.3	18
46	Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clinical Epigenetics, 2019, 11, 188.	4.1	27
47	Redirecting T cells to treat solid pediatric cancers. Cancer and Metastasis Reviews, 2019, 38, 611-624.	5.9	3
48	Durable control of hepatitis C through interferonâ€free antiviral combination therapy immediately prior to allogeneic haematopoietic stem cell transplantation. Journal of Viral Hepatitis, 2019, 26, 454-458.	2.0	3
49	Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia, 2019, 33, 884-892.	7.2	158
50	Blinatumomab in Pediatric Patients with Relapsed/Refractory B-Cell Precursor and Molecularly Resistant Acute Lymphoblastic Leukemia (R/R ALL): Updated Analysis of 110 Patients Treated in an Expanded Access Study (RIALTO). Blood, 2019, 134, 1294-1294.	1.4	7
51	A Phase I Study of Single-Agent Inotuzumab Ozogamicin in Pediatric CD22-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia: Preliminary Results of the ITCC-059 Study. Blood, 2019, 134, 2629-2629.	1.4	7
52	Upfront azacitidine (AZA) in juvenile myelomonocytic leukemia (JMML): Interim analysis of the prospective AZA-JMML-001 study Journal of Clinical Oncology, 2019, 37, 10031-10031.	1.6	7
53	Haploidentical allogeneic hematopoietic stem cell transplantation in patients with high-risk soft tissue sarcomas: results of a single-center prospective trial. Bone Marrow Transplantation, 2018, 53, 891-894.	2.4	10
54	Successful Extracorporeal Life Support in a Pediatric Hematopoietic Stem Cell Transplant Recipient With Periengraftment Respiratory Failure. Journal of Pediatric Hematology/Oncology, 2018, 40, e256-e259.	0.6	7

#	Article	IF	CITATIONS
55	Programmed cell death ligand 1 (PD‣1) expression is not a predominant feature in Ewing sarcomas. Pediatric Blood and Cancer, 2018, 65, e26719.	1.5	39
56	CAR T cell immunotherapy in hematology and beyond. Clinical Immunology, 2018, 186, 54-58.	3.2	19
57	Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Frontiers in Oncology, 2018, 8, 513.	2.8	29
58	Clofarabine, high-dose cytarabine and liposomal daunorubicin in pediatric relapsed/refractory acute myeloid leukemia: a phase IB study. Haematologica, 2018, 103, 1484-1492.	3.5	24
59	Low incidence of symptomatic osteonecrosis after allogeneic <scp>HSCT</scp> in children with highâ€risk or relapsed <scp>ALL</scp> – results of the <scp>ALL</scp> â€ <scp>SCT</scp> 2003 trial. British Journal of Haematology, 2018, 183, 104-109.	2.5	12
60	High Molecular Remission Rate in Pediatric Patients (pts) with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia (r/r ALL) Treated with Blinatumomab: Rialto an Open-Label, Multicenter, Expanded Access Study. Blood, 2018, 132, 1375-1375.	1.4	3
61	Single-agent expansion cohort of lenvatinib (LEN) and combination dose-finding cohort of LEN + etoposide (ETP) + ifosfamide (IFM) in patients (pts) aged 2 to â‰⊉5 years with relapsed/refractory osteosarcoma (OS) Journal of Clinical Oncology, 2018, 36, 11527-11527.	1.6	22
62	First experience of the AMLâ€Berlinâ€Frankfurtâ€Münster group in pediatric patients with standardâ€risk acute promyelocytic leukemia treated with arsenic trioxide and allâ€ <i>trans</i> retinoid acid. Pediatric Blood and Cancer, 2017, 64, e26461.	1.5	32
63	Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clinical Cancer Research, 2017, 23, 3499-3509.	7.0	76
64	FUS–DDIT3 Fusion Protein-Driven IGF-IR Signaling is a Therapeutic Target in Myxoid Liposarcoma. Clinical Cancer Research, 2017, 23, 6227-6238.	7.0	40
65	Control of Multidrug-Resistant Pseudomonas aeruginosa in Allogeneic Hematopoietic Stem Cell Transplant Recipients by a Novel Bundle Including Remodeling of Sanitary and Water Supply Systems. Clinical Infectious Diseases, 2017, 65, 935-942.	5.8	34
66	Neurotoxic side effects in children with refractory or relapsed Tâ€cell malignancies treated with nelarabine based therapy. British Journal of Haematology, 2017, 179, 272-283.	2.5	25
67	Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. OncoImmunology, 2017, 6, e1250050.	4.6	86
68	Quality of Survivorship in a Rare Disease: Clinicofunctional Outcome and Physical Activity in an Observational Cohort Study of 618 Long-Term Survivors of Ewing Sarcoma. Journal of Clinical Oncology, 2017, 35, 1704-1712.	1.6	33
69	Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget, 2017, 8, 108584-108603.	1.8	42
70	Exchange Transfusion and Leukapheresis in Pediatric Patients with AML With High Risk of Early Death by Bleeding and Leukostasis. Pediatric Blood and Cancer, 2016, 63, 640-645.	1.5	28
71	Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood, 2016, 127, 2101-2112.	1.4	208
72	Rapid Diagnosis of an AT/RT by the Detection of a Heterozygous SMARCB1 Germ Line Deletion in an Infant. Pediatric Blood and Cancer, 2016, 63, 1451-1453.	1.5	1

#	Article	IF	CITATIONS
73	Antibody-coupled siRNA as an efficient method for in vivo mRNA knockdown. Nature Protocols, 2016, 11, 22-36.	12.0	39
74	Targeting Interleukin-2 to the Bone Marrow Stroma for Therapy of Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Immunology Research, 2015, 3, 547-556.	3.4	39
75	Unmistakable Morphology? Infantile Malignant Osteopetrosis Resembling Juvenile Myelomonocytic Leukemia in Infants. Journal of Pediatrics, 2015, 167, 486-488.	1.8	20
76	Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood, 2015, 125, 1986-1994.	1.4	127
77	Deep Sequencing in Conjunction with Expression and Functional Analyses Reveals Activation of FGFR1 in Ewing Sarcoma. Clinical Cancer Research, 2015, 21, 4935-4946.	7.0	68
78	Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function. Oncology Reports, 2014, 32, 845-852.	2.6	20
79	Monitoring of Hematopoietic Chimerism after Transplantation for Pediatric Myelodysplastic Syndrome: Real-Time or Conventional Short Tandem Repeat PCR in Peripheral Blood or Bone Marrow?. Biology of Blood and Marrow Transplantation, 2014, 20, 1918-1925.	2.0	29
80	Cellular immunotherapy strategies for Ewing sarcoma. Immunotherapy, 2014, 6, 611-621.	2.0	10
81	Proposal of a Genetic Classifier for Risk Group Stratification in Pediatric T-Cell Lymphoblastic Lymphoma Reveals Significant Differences to T-Cell Lymphoblastic Leukemia. Blood, 2014, 124, 2398-2398.	1.4	1
82	Response-Adapted Sequential Immuno-Chemotherapy of Post-Transplant Lymphoproliferative Disorders in Pediatric Solid Organ Transplant Recipients: Results from the Prospective Ped-PTLD 2005 Trial. Blood, 2014, 124, 4468-4468.	1.4	24
83	Vaccination - a Novel Strategy to Improve the Persistence of CD19CAR Transduced T-Cells in Relapsed Paediatric ALL: Preliminary Results from the CD19TPALL Study. Blood, 2014, 124, 383-383.	1.4	0
84	Extending the chimeric receptor-based T-cell targeting strategy to solid tumors. OncoImmunology, 2013, 2, e26091.	4.6	8
85	Safety and Pharmacokinetics Of Clofarabine In Combination With High-Dose Cytarabine and Liposomal Daunorubicin In Pediatric AML: Results Of a Phase 1 Combination Study By The ITCC Consortium. Blood, 2013, 122, 2693-2693.	1.4	1
86	Immune modulation by molecular cancer targets and targeted therapies. OncoImmunology, 2012, 1, 358-360.	4.6	1
87	Anti-tumor cytotoxic T lymphocytes targeting solid tumors: Ready for clinical trials. Cytotherapy, 2012, 14, 4-6.	0.7	0
88	Outcome of Treatment for Relapsed Acute Lymphoblastic Leukemia in Children with Down Syndrome. Blood, 2012, 120, 669-669.	1.4	0
89	New Targets and Targeted Drugs for the Treatment of Cancer: An Outlook to Pediatric Oncology. Pediatric Hematology and Oncology, 2011, 28, 539-555.	0.8	9
90	Aetiology of childhood acute leukaemias: current status of knowledge. Radiation Protection Dosimetry, 2008, 132, 114-118.	0.8	27

#	Article	IF	CITATIONS
91	Target Antigen Expression on a Professional Antigen-Presenting Cell Induces Superior Proliferative Antitumor T-Cell Responses via Chimeric T-Cell Receptors. Journal of Immunotherapy, 2006, 29, 21-31.	2.4	27
92	Genetic Modification of T Lymphocytes for Adoptive Immunotherapy. Molecular Therapy, 2004, 10, 5-18.	8.2	77
93	Chimeric T-Cell Receptors for the Targeting of Cancer Cells. Acta Haematologica, 2003, 110, 154-159.	1.4	23