
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4085888/publications.pdf Version: 2024-02-01

MINORII SH KO

#	Article	IF	CITATIONS
1	Purification of cardiomyocytes and neurons derived from human pluripotent stem cells by inhibition of de novo fatty acid synthesis. STAR Protocols, 2022, 3, 101360.	0.5	7
2	Synthetic mRNAâ€based differentiation method enables early detection of Parkinson's phenotypes in neurons derived from Gaucher diseaseâ€induced pluripotent stem cells. Stem Cells Translational Medicine, 2021, 10, 572-581.	1.6	8
3	Fatty Acid Synthesis Is Indispensable for Survival of Human Pluripotent Stem Cells. IScience, 2020, 23, 101535.	1.9	47
4	Generation and Profiling of 2,135 Human ESC Lines for the Systematic Analyses of Cell States Perturbed by Inducing Single Transcription Factors. Cell Reports, 2020, 31, 107655.	2.9	28
5	MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Developmental Cell, 2020, 52, 429-445.e10.	3.1	114
6	Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Scientific Reports, 2019, 9, 913.	1.6	40
7	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	2.3	10
8	Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports, 2018, 8, 1189.	1.6	27
9	Establishment of a rapid and footprint-free protocol for differentiation of human embryonic stem cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factors. Stem Cell Research and Therapy, 2018, 9, 277.	2.4	12
10	Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Scientific Reports, 2017, 7, 42367.	1.6	83
11	Neural differentiation of human embryonic stem cells induced by the transgene-mediated overexpression of single transcription factors. Biochemical and Biophysical Research Communications, 2017, 490, 296-301.	1.0	30
12	SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 2017, 33, 2314-2321.	1.8	297
13	Expression analysis of the endogenous Zscan4 locus and its coding proteins in mouse ES cells and preimplantation embryos. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 179-190.	0.7	10
14	Salt suppresses IFNÎ ³ inducible chemokines through the IFNÎ ³ -JAK1-STAT1 signaling pathway in proximal tubular cells. Scientific Reports, 2017, 7, 46580.	1.6	2
15	Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells. Npj Aging and Mechanisms of Disease, 2017, 3, 1.	4.5	38
16	Zscan4 is expressed specifically during late meiotic prophase in both spermatogenesis and oogenesis. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 167-178.	0.7	14
17	Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-8.	1.2	5
18	Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development (Cambridge), 2016, 143, 3674-3685.	1.2	41

#	Article	IF	CITATIONS
19	Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells. Biology Open, 2016, 5, 311-322.	0.6	10
20	Emergence of undifferentiated colonies from mouse embryonic stem cells undergoing differentiation by retinoic acid treatment. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 616-624.	0.7	21
21	Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines. Scientific Reports, 2016, 6, 25667.	1.6	19
22	Induction of specific neuron types by overexpression of single transcription factors. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 961-973.	0.7	15
23	Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Research, 2015, 22, 307-318.	1.5	75
24	Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures. DNA Research, 2015, 22, 331-342.	1.5	24
25	ExAtlas: An interactive online tool for meta-analysis of gene expression data. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550019.	0.3	58
26	Chromatin Properties of Regulatory DNA Probed by Manipulation of Transcription Factors. Journal of Computational Biology, 2014, 21, 569-577.	0.8	4
27	Role of iPSC-Producing Factors in Pre-Implantation Embryos. , 2014, , 473-484.		0
28	A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human highâ \in grade serous carcinoma development. Journal of Pathology, 2014, 233, 228-237.	2.1	112
29	Efficient Generation of Integration-Free Human Induced Pluripotent Stem Cells From Keratinocytes by Simple Transfection of Episomal Vectors. Stem Cells Translational Medicine, 2014, 3, 787-791.	1.6	52
30	SOX9 accelerates ESC differentiation to three germ layer lineages by repressing SOX2 expression through P21 (WAF1/CIP1). Development (Cambridge), 2014, 141, 4254-4266.	1.2	22
31	Top3Î ² is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nature Neuroscience, 2013, 16, 1238-1247.	7.1	124
32	Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions. Cell Reports, 2013, 3, 1945-1957.	2.9	207
33	Identification of Transcription Factors for Lineage-Specific ESC Differentiation. Stem Cell Reports, 2013, 1, 545-559.	2.3	76
34	A Conserved Oct4/POUV-Dependent Network Links Adhesion and Migration to Progenitor Maintenance. Current Biology, 2013, 23, 2233-2244.	1.8	41
35	Developmental Arrest and Mouse Antral Not-Surrounded Nucleolus Oocytes1. Biology of Reproduction, 2013, 88, 2.	1.2	56
36	Zscan4 restores the developmental potency of embryonic stem cells. Nature Communications, 2013, 4, 1966.	5.8	94

MINORU SH KO

#	Article	IF	CITATIONS
37	Repression of Global Protein Synthesis by Eif1a-Like Genes That Are Expressed Specifically in the Two-Cell Embryos and the Transient Zscan4-Positive State of Embryonic Stem Cells. DNA Research, 2013, 20, 391-402.	1.5	40
38	Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas. American Journal of Physiology - Renal Physiology, 2013, 304, G1103-G1116.	1.6	10
39	Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells. Scientific Reports, 2013, 3, 1390.	1.6	54
40	Molecular Mechanisms of Pancreatic Stone Formation in Chronic Pancreatitis. Frontiers in Physiology, 2012, 3, 415.	1.3	23
41	Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Scientific Reports, 2012, 2, 208.	1.6	78
42	Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1199-1203.	3.3	68
43	Silencing or Amplification of Endocannabinoid Signaling in Blastocysts via CB1 Compromises Trophoblast Cell Migration. Journal of Biological Chemistry, 2012, 287, 32288-32297.	1.6	38
44	Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency. Cell Reports, 2012, 1, 99-109.	2.9	61
45	Stochastic Modeling for the Expression of a Gene Regulated by Competing Transcription Factors. PLoS ONE, 2012, 7, e32376.	1.1	6
46	Activation of JNK Triggers Release of Brd4 from Mitotic Chromosomes and Mediates Protection from Drug-Induced Mitotic Stress. PLoS ONE, 2012, 7, e34719.	1.1	12
47	Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis. PLoS ONE, 2012, 7, e38713.	1.1	58
48	Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells. Science, 2011, 334, 1706-1710.	6.0	237
49	Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity. BMC Genomics, 2011, 12, 102.	1.2	12
50	Generation of mouse ES cell lines engineered for the forced induction of transcription factors. Scientific Reports, 2011, 1, 167.	1.6	45
51	Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells. Journal of Cellular Physiology, 2010, 222, 127-137.	2.0	12
52	A Role for Borg5 During Trophectoderm Differentiation. Stem Cells, 2010, 28, 1030-1038.	1.4	23
53	Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 2010, 464, 858-863.	13.7	375
54	Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript. PLoS Biology, 2010, 8, e1000379.	2.6	219

#	Article	IF	CITATIONS
55	Gene Expression Profiling of Mouse Embryos with Microarrays. Methods in Enzymology, 2010, 477, 511-541.	0.4	5
56	Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair. PLoS ONE, 2010, 5, e10009.	1.1	52
57	Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells. DNA Research, 2009, 16, 45-58.	1.5	503
58	Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells. DNA Research, 2009, 16, 73-80.	1.5	38
59	Dax1 Binds to Oct3/4 and Inhibits Its Transcriptional Activity in Embryonic Stem Cells. Molecular and Cellular Biology, 2009, 29, 4574-4583.	1.1	68
60	Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder. DNA Research, 2009, 16, 261-273.	1.5	113
61	Requirement for Shh and Fox family genes at different stages in sweat gland development. Human Molecular Genetics, 2009, 18, 1769-1778.	1.4	39
62	Trim43a, Trim43b, and Trim43c: Novel mouse genes expressed specifically in mouse preimplantation embryos. Gene Expression Patterns, 2009, 9, 595-602.	0.3	9
63	Uncovering Early Response of Gene Regulatory Networks in ESCs by Systematic Induction of Transcription Factors. Cell Stem Cell, 2009, 5, 420-433.	5.2	178
64	22-P009 Analysis of gene expression in mouse antral SN and NSN oocytes. Mechanisms of Development, 2009, 126, S331.	1.7	0
65	Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biology, 2008, 6, 24.	1.7	59
66	Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology, 2008, 8, 45.	2.1	110
67	Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum―and feederâ€free defined culture condition. Developmental Dynamics, 2008, 237, 2129-2138.	0.8	16
68	BAF250B-Associated SWI/SNF Chromatin-Remodeling Complex Is Required to Maintain Undifferentiated Mouse Embryonic Stem Cells. Stem Cells, 2008, 26, 1155-1165.	1.4	148
69	Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics, 2008, 9, 269.	1.2	144
70	Prediction of evolutionarily conserved interologs in Mus musculus. BMC Genomics, 2008, 9, 465.	1.2	30
71	An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expression Patterns, 2008, 8, 181-198.	0.3	74
72	Comparative analysis of oocyte transcript profiles reveals a high degree of conservation among species. Reproduction, 2008, 135, 439-448.	1.1	36

#	Article	IF	CITATIONS
73	Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells. PLoS Genetics, 2008, 4, e1000241.	1.5	125
74	Enhanced sensitivity to IGF-II signaling links loss of imprinting of <i>IGF2</i> to increased cell proliferation and tumor risk. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20926-20931.	3.3	97
75	AGEMAP: A Gene Expression Database for Aging in Mice. PLoS Genetics, 2007, 3, e201.	1.5	355
76	Zscan4: A novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Developmental Biology, 2007, 307, 539-550.	0.9	249
77	Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains. Developmental Biology, 2007, 307, 446-459.	0.9	98
78	Human ES Cell Profiling Broadens the Reach of Bivalent Domains. Cell Stem Cell, 2007, 1, 237-238.	5.2	37
79	Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity. Genome Biology, 2007, 8, R163.	13.9	125
80	Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007, 9, 625-635.	4.6	1,061
81	Zscan4: A NOVEL GENE EXPRESSED EXCLUSIVELY IN LATE 2-CELL EMBRYOS. Biology of Reproduction, 2007, 77, 79-79.	1.2	1
82	Use of Chuk as an internal standard suitable for quantitative RT-PCR in mouse preimplantation embryos. Reproductive BioMedicine Online, 2006, 13, 394-403.	1.1	22
83	Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Developmental Biology, 2006, 291, 342-355.	0.9	120
84	Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling. PLoS ONE, 2006, 1, e26.	1.1	161
85	Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Development Growth and Differentiation, 2006, 48, 381-390.	0.6	33
86	Global gene expression profiling of preimplantation embryos. Human Cell, 2006, 19, 98-117.	1.2	133
87	Defining a Developmental Path to Neural Fate by Global Expression Profiling of Mouse Embryonic Stem Cells and Adult Neural Stem/Progenitor Cells. Stem Cells, 2006, 24, 889-895.	1.4	58
88	High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expression Patterns, 2006, 6, 213-224.	0.3	70
89	Expression profiling of the mouse early embryo: Reflections and perspectives. Developmental Dynamics, 2006, 235, 2437-2448.	0.8	12
90	CisView: A Browser and Database of cis-regulatory Modules Predicted in the Mouse Genome. DNA Research, 2006, 13, 123-134.	1.5	28

6

#	Article	IF	CITATIONS
91	Genomic Approaches to Early Embryogenesis and Stem Cell Biology. Seminars in Reproductive Medicine, 2006, 24, 330-339.	0.5	16
92	Klf4 Cooperates with Oct3/4 and Sox2 To Activate the Lefty1 Core Promoter in Embryonic Stem Cells. Molecular and Cellular Biology, 2006, 26, 7772-7782.	1.1	227
93	The absence of a Ca2+ signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality. Reproduction, 2006, 132, 45-57.	1.1	62
94	The Multifunctional RNA-Binding Protein La Is Required for Mouse Development and for the Establishment of EmbryonicStem Cells. Molecular and Cellular Biology, 2006, 26, 1445-1451.	1.1	53
95	Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood, 2005, 106, 1938-1947.	0.6	123
96	A web-based tool for principal component and significance analysis of microarray data. Bioinformatics, 2005, 21, 2548-2549.	1.8	236
97	Genome-wide assembly and analysis of alternative transcripts in mouse. Genome Research, 2005, 15, 748-754.	2.4	49
98	Identification of Zfp-57 as a downstream molecule of STAT3 and Oct-3/4 in embryonic stem cells. Biochemical and Biophysical Research Communications, 2005, 331, 23-30.	1.0	38
99	Mouse ovary developmental RNA and protein markers from gene expression profiling. Developmental Biology, 2005, 279, 271-290.	0.9	53
100	Loss of Imprinting of Igf2 Alters Intestinal Maturation and Tumorigenesis in Mice. Science, 2005, 307, 1976-1978.	6.0	312
101	Molecular biology of preimplantation embryos: primer for philosophical discussions. Reproductive BioMedicine Online, 2005, 10, 80-87.	1.1	5
102	Discussion (day 2 session 2): Modern genetics and the human embryo in vitro. Reproductive BioMedicine Online, 2005, 10, 107-110.	1.1	0
103	Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biology, 2005, 6, R61.	13.9	109
104	Embryogenomics of pre-implantation mammalian development: current status. Reproduction, Fertility and Development, 2004, 16, 79.	0.1	21
105	Age-associated alteration of gene expression patterns in mouse oocytes. Human Molecular Genetics, 2004, 13, 2263-2278.	1.4	455
106	Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10326-10331.	3.3	220
107	The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC). Genome Research, 2004, 14, 2121-2127.	2.4	486
108	Aging of Oocyte, Ovary, and Human Reproduction. Annals of the New York Academy of Sciences, 2004, 1034, 117-131.	1.8	77

#	Article	IF	CITATIONS
109	Gene content of the 750-kb critical region for mouse embryonic ectoderm lethal tcl-w5. Mammalian Genome, 2004, 15, 265-276.	1.0	5
110	A global view of gene expression in the preimplantation mouse embryo: morula versus blastocyst. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2004, 115, S85-S91.	0.5	33
111	Dynamics of Global Gene Expression Changes during Mouse Preimplantation Development. Developmental Cell, 2004, 6, 117-131.	3.1	814
112	Embryogenomics of pre-implantation mammalian development: current status. Reproduction, Fertility and Development, 2004, 16, 79-85.	0.1	3
113	Efficacy of 2-methoxyethoxy-modified antisense oligonucleotides for the study of mouse preimplantation development. Reproductive BioMedicine Online, 2003, 6, 318-322.	1.1	6
114	Expression Profiling of Placentomegaly Associated with Nuclear Transplantation of Mouse ES Cells. Developmental Biology, 2003, 253, 36-53.	0.9	73
115	The NIA cDNA Project in mouse stem cells and early embryos. Comptes Rendus - Biologies, 2003, 326, 931-940.	0.1	12
116	Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Developmental Biology, 2003, 258, 91-104.	0.9	41
117	Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 2003, 309, 81-89.	1.0	115
118	In Situ-Synthesized Novel Microarray Optimized for Mouse Stem Cell and Early Developmental Expression Profiling. Genome Research, 2003, 13, 1011-1021.	2.4	96
119	Transcriptome Analysis of Mouse Stem Cells and Early Embryos. PLoS Biology, 2003, 1, e74.	2.6	156
120	Gene Expression Profiling of Embryo-Derived Stem Cells Reveals Candidate Genes Associated With Pluripotency and Lineage Specificity. Genome Research, 2002, 12, 1921-1928.	2.4	200
121	Assembly, Verification, and Initial Annotation of the NIA Mouse 7.4K cDNA Clone Set. Genome Research, 2002, 12, 1999-2003.	2.4	49
122	EDA targets revealed by skin gene expression profiles of wild-type, Tabby and Tabby EDA-A1 transgenic mice. Human Molecular Genetics, 2002, 11, 1763-1773.	1.4	33
123	Identification, molecular characterization, and tissue expression of OVCOV1. Mammalian Genome, 2002, 13, 619-624.	1.0	4
124	A Murine Dopamine Neuron-Specific cDNA Library and Microarray: Increased COXI Expression during Methamphetamine Neurotoxicity. Neurobiology of Disease, 2001, 8, 822-833.	2.1	35
125	Random Monoallelic Expression of Three Genes Clustered within 60 kb of Mouse t Complex Genomic DNA. Genome Research, 2001, 11, 1833-1841.	2.4	38
126	Verification and initial annotation of the NIA mouse 15K cDNA clone set. Nature Genetics, 2001, 28, 17-18.	9.4	100

#	Article	IF	CITATIONS
127	A radiation hybrid map of mouse genes. Nature Genetics, 2001, 29, 201-205.	9.4	93
128	Embryogenomics: developmental biology meets genomics. Trends in Biotechnology, 2001, 19, 511-518.	4.9	70
129	Assignment <footref rid="foot01">¹</footref> of OVCOV1 (alias CGI-15) to human chromosome 20 band q13.1→q13.2 by fluorescent in situ hybridization. Cytogenetic and Genome Research, 2001, 94, 252-253.	0.6	1
130	Construction of Long-Transcript Enriched cDNA Libraries from Submicrogram Amounts of Total RNAs by a Universal PCR Amplification Method. Genome Research, 2001, 11, 1553-1558.	2.4	25
131	Title is missing!. Nature Genetics, 2001, 28, 17-18.	9.4	45
132	The beta subunit of the high-affinity IgE receptor, a candidate for atopic dermatitis, is not imprinted. British Journal of Dermatology, 2000, 142, 370-371.	1.4	7
133	Interferon-Î ³ Receptor Polymorphisms Determine Strain Differences in Accessibility of Activated Lymphocyte NK-Triggering Antigens to Recognition by Self-Reactive NK Cells. Cellular Immunology, 2000, 200, 88-97.	1.4	3
134	Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9127-9132.	3.3	383
135	Eleven Densely Clustered Genes, Six of them Novel, in 176 kb of Mouse t-complex DNA. Genome Research, 2000, 10, 916-923.	2.4	5
136	Phemx, a Novel Mouse Gene Expressed in Hematopoietic Cells Maps to the Imprinted Cluster on Distal Chromosome 7. Genomics, 2000, 68, 13-21.	1.3	22
137	PLAC1, an Xq26 Gene with Placenta-Specific Expression. Genomics, 2000, 68, 305-312.	1.3	95
138	Two Novel Mouse Genes—Nubp2, Mapped to the t-Complex on Chromosome 17, and Nubp1, Mapped to Chromosome 16— Establish a New Gene Family of Nucleotide-Binding Proteins in Eukaryotes. Genomics, 1999, 60, 152-160.	1.3	18
139	Expression of Adrenomedullin, a Hypotensive Peptide, in the Trophoblast Ciant Cells at the Embryo Implantation Site in Mouse. Developmental Biology, 1998, 203, 264-275.	0.9	59
140	Tissue-Specific Expression and Mapping of theCox7ahGene in Mouse. Genomics, 1998, 49, 363-370.	1.3	13
141	Developmental Genomics and Its Relation to Aging. Genomics, 1998, 52, 113-118.	1.3	9
142	Genome-wide mapping of unselected transcripts from extraembryonic tissue of 7.5-day mouse embryos reveals enrichment in the t-complex and under-representation on the X chromosome. Human Molecular Genetics, 1998, 7, 1967-1978.	1.4	81
143	Differential Expression Pattern of XqPAR-Linked Genes SYBL1 and IL9R Correlates with the Structure and Evolution of the Region. Human Molecular Genetics, 1997, 6, 1917-1923.	1.4	26
144	The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13069-13074.	3.3	282

#	Article	IF	CITATIONS
145	The Gene for Multiple Familial Trichoepithelioma Maps to Chromosome 9p21. Journal of Investigative Dermatology, 1996, 107, 41-43.	0.3	101
146	Cloning and expression analyses of mouse dystroglycan gene: specific expression in maternal decidua at the peri-implantation stage. Human Molecular Genetics, 1996, 5, 1259-1267.	1.4	19
147	Genetic mapping of 40 cDNA clones on the mouse genome by PCR. Mammalian Genome, 1994, 5, 349-355.	1.0	28
148	Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mammalian Genome, 1994, 5, 253-274.	1.0	652
149	Simple and robust screening of pooled yeast artificial chromosome libraries by the restriction enzyme digestion of polymerase chain reaction products. Genetic Analysis, Techniques and Applications, 1994, 11, 63-68.	1.5	1
150	Toward a Whole cDNA Catalog: Construction of an Equalized cDNA Library from Mouse Embryos. Genomics, 1994, 23, 202-210.	1.3	31
151	Optimized conditions for cycle sequencing of PCR products Genome Research, 1994, 3, 359-360.	2.4	3
152	The Short 3′-End Region of Complementary DNAs as PCR-Based Polymorphic Markers for an Expression Map of the Mouse Genome. Genomics, 1993, 16, 161-168.	1.3	34
153	Problems and paradigms: Induction mechanism of a single gene molecule: Stochastic or deterministic?. BioEssays, 1992, 14, 341-346.	1.2	103
154	A stochastic model for gene induction. Journal of Theoretical Biology, 1991, 153, 181-194.	0.8	181
155	An â€~equalized cDNA library' by the reassociation of short double-stranded cDNAs. Nucleic Acids Research, 1990, 18, 5705-5711.	6.5	140
156	Unbiased amplification of a highly complex mixture of DNA fragments by †lone linker'-tagged PCR. Nucleic Acids Research, 1990, 18, 4293-4293.	6.5	60
157	An auto-inducible vector conferring high glucocorticoid inducibility upon stable transformant cells. Gene, 1989, 84, 383-389.	1.0	37
158	A Highly Inducible System of Gene Expression by Positive Feedback Production of Glucocorticoid Receptors. DNA and Cell Biology, 1989, 8, 127-133.	5.1	14
159	Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature, 1985, 318, 73-75.	13.7	470
160	Probe design for large-scale molecular biology applications. , 0, , .		0