Timothy A Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4085399/publications.pdf

Version: 2024-02-01

72 papers 2,599 citations

28 h-index 197818 49 g-index

74 all docs

74 docs citations

74 times ranked 1990 citing authors

#	Article	IF	CITATIONS
1	Axial ligand tuning of a nonheme iron(IV)–oxo unit for hydrogen atom abstraction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19181-19186.	7.1	376
2	Axial Ligand Effects on the Geometric and Electronic Structures of Nonheme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 12394-12407.	13.7	177
3	Axial Ligand Substituted Nonheme FelVO Complexes:  Observation of Near-UV LMCT Bands and FeO Raman Vibrations. Journal of the American Chemical Society, 2005, 127, 12494-12495.	13.7	149
4	Combined Spectroscopic/Computational Studies on Fe- and Mn-Dependent Superoxide Dismutases: Insights into Second-Sphere Tuning of Active Site Properties. Accounts of Chemical Research, 2004, 37, 461-470.	15.6	105
5	Spectroscopic properties and reactivity of a mononuclear oxomanganese(iv) complex. Chemical Communications, 2013, 49, 5378.	4.1	78
6	Saturation Kinetics in Phenolic O–H Bond Oxidation by a Mononuclear Mn(III)–OH Complex Derived from Dioxygen. Inorganic Chemistry, 2014, 53, 7622-7634.	4.0	76
7	A Series of Peroxomanganese(III) Complexes Supported by Tetradentate Aminopyridyl Ligands: Detailed Spectroscopic and Computational Studies. Journal of the American Chemical Society, 2010, 132, 2821-2831.	13.7	64
8	Distinct Reactivity Differences of Metal Oxo and Its Corresponding Hydroxo Moieties in Oxidations: Implications from a Manganese(IV) Complex Having Dihydroxide Ligand. Angewandte Chemie - International Edition, 2011, 50, 7321-7324.	13.8	64
9	Spectroscopic and Computational Study of a Non-Heme Iron {Feâ^'NO}7 System:  Exploring the Geometric and Electronic Structures of the Nitrosyl Adduct of Iron Superoxide Dismutase. Journal of the American Chemical Society, 2003, 125, 8348-8363.	13.7	61
10	Spectroscopic and Computational Studies of the Azide-Adduct of Manganese Superoxide Dismutase:Â Definitive Assignment of the Ligand Responsible for the Low-Temperature Thermochromism. Journal of the American Chemical Society, 2004, 126, 12477-12491.	13.7	60
11	Probing the Geometric and Electronic Structures of the Low-Temperature Azide Adduct and the Product-Inhibited Form of Oxidized Manganese Superoxide Dismutase. Biochemistry, 2005, 44, 1504-1520.	2.5	57
12	Manganese–Oxygen Intermediates in O–O Bond Activation and Hydrogen-Atom Transfer Reactions. Accounts of Chemical Research, 2017, 50, 2706-2717.	15.6	57
13	Low-Spin Hexacoordinate Mn(III): Synthesis and Spectroscopic Investigation of Homoleptic Tris(pyrazolyl)borate and Tris(carbene)borate Complexes. Inorganic Chemistry, 2013, 52, 144-159.	4.0	55
14	Spectroscopic and Computational Studies on Iron and Manganese Superoxide Dismutases:  Nature of the Chemical Events Associated with Active-Site pKs. Journal of the American Chemical Society, 2002, 124, 10833-10845.	13.7	54
15	Mn K-Edge X-ray Absorption Studies of Oxo- and Hydroxo-manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties. Inorganic Chemistry, 2014, 53, 6179-6194.	4.0	54
16	Near-infrared ² E _g â†' ⁴ A _{2g} and visible LMCT luminescence from a molecular <i>bis</i> -(tris(carbene)borate) manganese(IV) complex. Canadian Journal of Chemistry, 2017, 95, 547-552.	1.1	52
17	Nucleophilic reactivity of a series of peroxomanganese(iii) complexes supported by tetradentate aminopyridyl ligands. Dalton Transactions, 2011, 40, 1707.	3.3	47
18	Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)â€Oxo Complexes. Angewandte Chemie - International Edition, 2017, 56, 4178-4182.	13.8	47

#	Article	IF	CITATIONS
19	Oxo- and Hydroxomanganese(IV) Adducts: A Comparative Spectroscopic and Computational Study. Inorganic Chemistry, 2010, 49, 7530-7535.	4.0	43
20	Geometric and Electronic Structures of Peroxomanganese(III) Complexes Supported by Pentadentate Amino-Pyridine and -Imidazole Ligands. Inorganic Chemistry, 2011, 50, 10190-10203.	4.0	43
21	Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity. Journal of the American Chemical Society, 2016, 138, 15413-15424.	13.7	43
22	Reaction landscape of a pentadentate N5-ligated MnII complex with O2Ë™â^' and H2O2 includes conversion of a peroxomanganese(iii) adduct to a bis(μ-oxo)dimanganese(iii,iv) species. Dalton Transactions, 2013, 42, 13014.	3.3	40
23	Peroxomanganese complexes as an aid to understanding redox-active manganese enzymes. Journal of Biological Inorganic Chemistry, 2014, 19, 1-15.	2.6	39
24	Novel Tripeptide Model of Nickel Superoxide Dismutase. Inorganic Chemistry, 2010, 49, 362-364.	4.0	35
25	Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II). Inorganic Chemistry, 2015, 54, 10380-10397.	4.0	34
26	Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex. Inorganic Chemistry, 2016, 55, 8110-8120.	4.0	34
27	X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes. Journal of Physical Chemistry Letters, 2017, 8, 2584-2589.	4.6	31
28	MAPping the Chiral Inversion and Structural Transformation of a Metal-Tripeptide Complex Having Ni-Superoxide Dismutase Activity. Inorganic Chemistry, 2011, 50, 2479-2487.	4.0	28
29	Electrochemical formation and reactivity of a manganese peroxo complex: acid driven H2O2 generation vs. O–O bond cleavage. Chemical Science, 2014, 5, 2304.	7.4	27
30	X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn ^{IV} -oxo and Mn ^{IV} -hydroxo Complexes and Quantum Chemical Investigation of Mn ^{IV} Zero-Field Splitting. Inorganic Chemistry, 2016, 55, 3272-3282.	4.0	27
31	Formation, Characterization, and O–O Bond Activation of a Peroxomanganese(III) Complex Supported by a Cross-Clamped Cyclam Ligand. Inorganic Chemistry, 2016, 55, 2055-2069.	4.0	27
32	Vanadocene <i>de Novo</i> : Spectroscopic and Computational Analysis of Bis(Î- ⁵ -cyclopentadienyl)vanadium(II). Organometallics, 2012, 31, 8265-8274.	2.3	25
33	Concerted proton–electron transfer reactions of manganese–hydroxo and manganese–oxo complexes. Chemical Communications, 2020, 56, 9238-9255.	4.1	24
34	Steric and Electronic Influences on the Structures of Peroxomanganese(III) Complexes Supported by Tetradentate Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 1598-1608.	2.0	23
35	Experimental and Multireference ab Initio Investigations of Hydrogen-Atom-Transfer Reactivity of a Mononuclear Mn ^{IV} -oxo Complex. Inorganic Chemistry, 2019, 58, 13902-13916.	4.0	23
36	O–H bond oxidation by a monomeric Mn ^{III} –OMe complex. Dalton Transactions, 2015, 44, 3295-3306.	3.3	22

#	Article	IF	CITATIONS
37	Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorganic Chemistry, 2020, 59, 2689-2700.	4.0	22
38	Geometric and electronic structure of a peroxomanganese(iii) complex supported by a scorpionate ligand. Dalton Transactions, 2014, 43, 17949-17963.	3.3	21
39	Geometric and Electronic Structures of Manganese-Substituted Iron Superoxide Dismutase. Inorganic Chemistry, 2013, 52, 3356-3367.	4.0	19
40	Relationship between Hydrogen-Atom Transfer Driving Force and Reaction Rates for an Oxomanganese(IV) Adduct. Inorganic Chemistry, 2018, 57, 8253-8263.	4.0	19
41	NMR Studies of a MnIII-hydroxo Adduct Reveal an Equilibrium between MnIII-hydroxo and μ-Oxodimanganese(III,III) Species. Inorganic Chemistry, 2018, 57, 7825-7837.	4.0	19
42	MnIV-Oxo complex of a bis(benzimidazolyl)-containing N5 ligand reveals different reactivity trends for MnIV-oxo than FeIV-oxo species. Dalton Transactions, 2019, 48, 5007-5021.	3.3	19
43	Spectroscopic and Structural Characterization of Mn(III)-Alkylperoxo Complexes Supported by Pentadentate Amide-Containing Ligands. Inorganic Chemistry, 2018, 57, 2489-2502.	4.0	17
44	Electrochemical formation of MnIII-peroxo complexes supported by pentadentate amino pyridine and imidazole ligands. Chemical Communications, 2013, 49, 5696.	4.1	16
45	Structure and Reactivity of ($1\frac{1}{4}$ -Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorganic Chemistry, 2019, 58, 622-636.	4.0	16
46	Isolation and characterization of a peroxo manganese (III) dioxygen reaction intermediate using cryogenic ion vibrational predissociation spectroscopy. International Journal of Mass Spectrometry, 2013, 354-355, 33-38.	1.5	15
47	Crystal Structure and C–H Bond-Cleaving Reactivity of a Mononuclear Co ^{IV} –Dinitrate Complex. Journal of the American Chemical Society, 2020, 142, 13435-13441.	13.7	15
48	Spectroscopic and Computational Investigation of Lowâ€Spin MnIII Bis(scorpionate) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 2413-2423.	2.0	13
49	Controlling the Chiral Inversion Reaction of the Metallopeptide Ni-Asparagine-Cysteine-Cysteine with Dioxygen. Inorganic Chemistry, 2012, 51, 10055-10063.	4.0	12
50	Structural Characterization of a Series of N5â€Ligated Mn IV â€Oxo Species. Chemistry - A European Journal, 2020, 26, 900-912.	3.3	12
51	Mn K-edge X-ray absorption studies of mononuclear Mn(III)–hydroxo complexes. Journal of Biological Inorganic Chemistry, 2017, 22, 1281-1293.	2.6	11
52	Pyrazinetetracarboxamide: A Duplex Ligand for Palladium(II). Inorganic Chemistry, 2016, 55, 5098-5100.	4.0	10
53	Steric control of dioxygen activation pathways for Mnll complexes supported by pentadentate, amide-containing ligands. Dalton Transactions, 2019, 48, 13034-13045.	3.3	10
54	Mechanistic insight into oxygen atom transfer reactions by mononuclear manganese(<scp>iv</scp>)–oxo adducts. Dalton Transactions, 2021, 50, 3577-3585.	3.3	10

#	Article	IF	CITATIONS
55	Controlling the Reactivity of a Metal-Hydroxo Adduct with a Hydrogen Bond. Journal of the American Chemical Society, 2021, 143, 15159-15175.	13.7	9
56	C–H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. Journal of the American Chemical Society, 2022, 144, 12072-12080.	13.7	9
57	MnIII-Peroxo adduct supported by a new tetradentate ligand shows acid-sensitive aldehyde deformylation reactivity. Dalton Transactions, 2018, 47, 13442-13458.	3.3	8
58	Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)â€Oxo Complexes. Angewandte Chemie, 2017, 129, 4242-4246.	2.0	7
59	Experimental and computational investigations of Câ \in "H activation of cyclohexane by ozone in liquid CO2. Reaction Chemistry and Engineering, 2020, 5, 793-802.	3.7	7
60	Electronic Structure and Magnetic Properties of a Titanium(II) Coordination Complex. Inorganic Chemistry, 2020, 59, 6187-6201.	4.0	7
61	Ligand Influence on Structural Properties and Reactivity of Bis(μâ€oxo)dimanganese(III,IV) Species and Comparison of Reactivity with Terminal Mn ^{IV} â€oxo Complexes. ChemistrySelect, 2018, 3, 13507-13516.	1.5	6
62	Characterization and chemical reactivity of room-temperature-stable MnIII–alkylperoxo complexes. Chemical Science, 2021, 12, 12564-12575.	7.4	5
63	Correction: Near-infrared ² E _g ât' ⁴ A _{2g} and visible LMCT luminescence from a molecular <i>bis</i> ji>-(tris(carbene)borate) manganese(IV) complex. Canadian Journal of Chemistry, 2020, 98, 250-250.	1.1	4
64	Differences in chemoselectivity in olefin oxidation by a series of non-porphyrin manganese(<scp>iv</scp>)-oxo complexes. Dalton Transactions, 2022, 51, 5938-5949.	3.3	4
65	Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis. Journal of the American Chemical Society, 2022, 144, 12769-12780.	13.7	4
66	Highly Selective Isobutane Hydroxylation by Ozone in a Pressure-Tuned Biphasic Gas–Liquid Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 5506-5512.	6.7	2
67	Probing the Mechanism for 2,4′-Dihydroxyacetophenone Dioxygenase Using Biomimetic Iron Complexes. Inorganic Chemistry, 2021, 60, 7168-7179.	4.0	2
68	Electronic Structure and Magnetic Properties of a Low-Spin Crll Complex: trans-[CrCl2(dmpe)2] (dmpe) Tj ETQqC)	/Oyerlock 10
69	Selective ozone activation of phenanthrene in liquid CO ₂ . RSC Advances, 2021, 12, 626-630.	3.6	1
70	Electrochemical Formation and Reactivity of a Mnâ€Peroxo Complex Bearing an Amido N5 Ligand. ChemElectroChem, 0, , .	3.4	1
71	Superoxide Processing., 2021,, 541-568.		0
72	Mimicking Elementary Reactions of Manganese Lipoxygenase Using Mn-hydroxo and Mn-alkylperoxo Complexes. Molecules, 2021, 26, 7151.	3.8	0