
Taylor Moot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4085089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic Ligands. Advanced Functional Materials, 2022, 32, .	14.9	43
2	Dye-Sensitized Nonstoichiometric Strontium Titanate Core–Shell Photocathodes for Photoelectrosynthesis Applications. ACS Applied Materials & Interfaces, 2021, 13, 15261-15269.	8.0	5
3	Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Letters, 2021, 6, 2038-2047.	17.4	43
4	Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics. ACS Nano, 2021, 15, 19334-19344.	14.6	18
5	Organic Chromophores Designed for Hole Injection into Wide-Band-Gap Metal Oxides for Solar Fuel Applications. Chemistry of Materials, 2020, 32, 8158-8168.	6.7	12
6	Suppressing Cation Migration in Triple-Cation Lead Halide Perovskites. ACS Energy Letters, 2020, 5, 2802-2810.	17.4	51
7	Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy and Environmental Science, 2020, 13, 3393-3403.	30.8	43
8	Beyond Strain: Controlling the Surface Chemistry of CsPbI ₃ Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials, 2020, 32, 7850-7860.	6.7	23
9	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	21.0	39
10	Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule, 2020, 4, 1160-1185.	24.0	211
11	The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2349-2360.	17.4	49
12	Improving Low-Bandgap Tin–Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing. ACS Energy Letters, 2020, 5, 1215-1223.	17.4	78
13	Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 2020, 4, 1759-1775.	24.0	284
14	Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic–Inorganic Hybrid Perovskite Nanocrystals. ACS Nano, 2020, 14, 8816-8825.	14.6	94
15	Cslâ€Antisolvent Adduct Formation in Allâ€Inorganic Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903365.	19.5	55
16	Cation Effects in p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 1496-1505.	5.1	11
17	Enabling Flexible All-Perovskite Tandem Solar Cells. Joule, 2019, 3, 2193-2204.	24.0	331
18	Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. ACS Nano, 2018, 12, 10327-10337.	14.6	186

TAYLOR MOOT

#	Article	IF	CITATIONS
19	Designing Plasmonâ€Enhanced Thermochromic Films Using a Vanadium Dioxide Nanoparticle Elastomeric Composite. Advanced Optical Materials, 2016, 4, 578-583.	7.3	26
20	Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode. Materials Discovery, 2016, 6, 9-16.	3.3	23
21	Application of Quality by Design (QbD) Approach to Ultrasonic Atomization Spray Coating of Drug-Eluting Stents. AAPS PharmSciTech, 2015, 16, 811-823.	3.3	9