Gabriele Klug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084554/publications.pdf

Version: 2024-02-01

		76326	110387
157	5,482	40	64
papers	citations	h-index	g-index
158	158	158	3762
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antisense RNA asPcrL regulates expression of photosynthesis genes in <i>Rhodobacter sphaeroides</i> by promoting RNase III-dependent turn-over of <i>puf</i> mRNA. RNA Biology, 2021, 18, 1445-1457.	3.1	10
2	Interplay between formation of photosynthetic complexes and expression of genes for iron–sulfur cluster assembly in Rhodobacter sphaeroides?. Photosynthesis Research, 2021, 147, 39-48.	2.9	2
3	Northern Blot Detection of Tiny RNAs. Methods in Molecular Biology, 2021, 2300, 41-58.	0.9	1
4	Impact of PNPase on the transcriptome of Rhodobacter sphaeroides and its cooperation with RNase III and RNase E. BMC Genomics, 2021, 22, 106.	2.8	7
5	The small DUF1127 protein CcaF1 from <i>Rhodobacter sphaeroides</i> is an RNA-binding protein involved in sRNA maturation and RNA turnover. Nucleic Acids Research, 2021, 49, 3003-3019.	14.5	16
6	sRNA-mediated RNA processing regulates bacterial cell division. Nucleic Acids Research, 2021, 49, 7035-7052.	14.5	18
7	A Complex Network of Sigma Factors and sRNA StsR Regulates Stress Responses in R. sphaeroides. International Journal of Molecular Sciences, 2021, 22, 7557.	4.1	2
8	A major checkpoint for protein expression in <i>Rhodobacter sphaeroides</i> during heat stress response occurs at the level of translation. Environmental Microbiology, 2021, 23, 6483-6502.	3.8	7
9	Maturation of UTR-Derived sRNAs Is Modulated during Adaptation to Different Growth Conditions. International Journal of Molecular Sciences, 2021, 22, 12260.	4.1	3
10	Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of Small Proteins from Bacteria and Archaea. ChemBioChem, 2020, 21, 1178-1187.	2.6	24
11	iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics, 2020, 21, 797.	2.8	2
12	Adaptation to Photooxidative Stress: Common and Special Strategies of the Alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms, 2020, 8, 283.	3.6	12
13	Enzymatic Analysis of Reconstituted Archaeal Exosomes. Methods in Molecular Biology, 2020, 2062, 63-79.	0.9	0
14	Adaptation of the Alphaproteobacterium <i>Rhodobacter sphaeroides</i> to stationary phase. Environmental Microbiology, 2019, 21, 4425-4445.	3.8	12
15	Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics, 2019, 20, 358.	2.8	60
16	Multiple Sense and Antisense Promoters Contribute to the Regulated Expression of the isc-suf Operon for Iron-Sulfur Cluster Assembly in Rhodobacter. Microorganisms, 2019, 7, 671.	3.6	3
17	A response regulator of the OmpR family is part of the regulatory network controlling the oxidative stress response of $\langle i \rangle$ Rhodobacter sphaeroides $\langle i \rangle$. Environmental Microbiology Reports, 2019, 11, 118-128.	2.4	7
18	Endonuclease Activity of MutL Protein of the Rhodobacter sphaeroides Mismatch Repair System. Biochemistry (Moscow), 2018, 83, 281-293.	1.5	8

#	Article	IF	Citations
19	PcrX, an sRNA derived from the 3′―UTR of the <i>Rhodobacter sphaeroides puf</i> operon modulates expression of <i>puf</i> genes encoding proteins of the bacterial photosynthetic apparatus. Molecular Microbiology, 2018, 110, 325-334.	2.5	21
20	The PhyR homolog RSP_1274 of Rhodobacter sphaeroides is involved in defense of membrane stress and has a moderate effect on RpoE (RSP_1092) activity. BMC Microbiology, 2018, 18, 18.	3.3	6
21	RNase E cleavage shapes the transcriptome of (i) Rhodobacter sphaeroides (/i) and strongly impacts phototrophic growth. Life Science Alliance, 2018, 1, e201800080.	2.8	22
22	An RpoHI-Dependent Response Promotes Outgrowth after Extended Stationary Phase in the Alphaproteobacterium Rhodobacter sphaeroides. Journal of Bacteriology, 2017, 199, .	2.2	22
23	Nop5 interacts with the archaeal <scp>RNA</scp> exosome. FEBS Letters, 2017, 591, 4039-4048.	2.8	5
24	6S RNA in Rhodobacter sphaeroides: 6S RNA and pRNA transcript levels peak in late exponential phase and gene deletion causes a high salt stress phenotype. RNA Biology, 2017, 14, 1627-1637.	3.1	13
25	A Set of Genetic Constructs for Binase and Barstar Overproduction. BioNanoScience, 2017, 7, 222-225.	3.5	0
26	The Archaeal Exosome: Degradation and Tailing at the 3′-End of RNA. Nucleic Acids and Molecular Biology, 2017, , 115-128.	0.2	1
27	Regulation of a polyamine transporter by the conserved 3′ UTR-derived sRNA SorX confers resistance to singlet oxygen and organic hydroperoxides in <i>Rhodobacter sphaeroides</i> . RNA Biology, 2016, 13, 988-999.	3.1	35
28	<i>Rhodobacter sphaeroides</i> CryB is a bacterial cryptochrome with (6–4) photolyase activity. FEBS Journal, 2016, 283, 4291-4309.	4.7	20
29	Characteristics of Pos19 – A Small Coding RNA in the Oxidative Stress Response of Rhodobacter sphaeroides. PLoS ONE, 2016, 11, e0163425.	2.5	18
30	The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5' Leader Featuring the sRNA UpsM. PLoS ONE, 2016, 11, e0165694.	2.5	16
31	A Cluster of Four Homologous Small RNAs Modulates C1Metabolism and the Pyruvate Dehydrogenase Complex in Rhodobacter sphaeroides under Various Stress Conditions. Journal of Bacteriology, 2015, 197, 1839-1852.	2.2	43
32	lscR of <i>Rhodobacter sphaeroides</i> functions as repressor of genes for ironâ€sulfur metabolism and represents a new type of ironâ€sulfurâ€binding protein. MicrobiologyOpen, 2015, 4, 790-802.	3.0	13
33	The sRNA SorY confers resistance during photooxidative stress by affecting a metabolite transporter in <i>Rhodobacter sphaeroides</i> . RNA Biology, 2015, 12, 569-577.	3.1	32
34	Impact of RNA Isolation Protocols on RNA Detection by Northern Blotting. Methods in Molecular Biology, 2015, 1296, 29-38.	0.9	21
35	Improved Northern Blot Detection of Small RNAs Using EDC Crosslinking and DNA/LNA Probes. Methods in Molecular Biology, 2015, 1296, 41-51.	0.9	33
36	RNase J is required for processing of a small number of RNAs inRhodobacter sphaeroides. RNA Biology, 2014, 11, 855-864.	3.1	11

#	Article	IF	Citations
37	Riboregulators and the role of Hfq in photosynthetic bacteria. RNA Biology, 2014, 11, 413-426.	3.1	29
38	Role of oxygen and the OxyR protein in the response to iron limitation in Rhodobacter sphaeroides. BMC Genomics, 2014, 15, 794.	2.8	40
39	Structure and function of the archaeal exosome. Wiley Interdisciplinary Reviews RNA, 2014, 5, 623-635.	6.4	29
40	Beyond catalysis: vitamin $\langle scp \rangle B \langle scp \rangle \langle sub \rangle 12 \langle sub \rangle$ as a cofactor in gene regulation. Molecular Microbiology, 2014, 91, 635-640.	2.5	27
41	Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Research, 2014, 42, 12691-12706.	14.5	16
42	RNase E Affects the Expression of the Acyl-Homoserine Lactone Synthase Gene <i>sinl</i> in Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 1435-1447.	2.2	34
43	Homoserine Lactones Influence the Reaction of Plants to Rhizobia. International Journal of Molecular Sciences, 2013, 14, 17122-17146.	4.1	77
44	Integrative "Omics―Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses. PLoS Genetics, 2013, 9, e1003576.	3.5	57
45	A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes. RNA Biology, 2013, 10, 347-352.	3.1	25
46	The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs. RNA Biology, 2013, 10, 415-424.	3.1	13
47	DegS and RseP Homologous Proteases Are Involved in Singlet Oxygen Dependent Activation of RpoE in Rhodobacter sphaeroides. PLoS ONE, 2013, 8, e79520.	2.5	24
48	Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides. Microbiology (United Kingdom), 2012, 158, 368-379.	1.8	26
49	Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16306-16311.	7.1	56
50	Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes. Nucleic Acids Research, 2012, 40, 5901-5909.	14.5	20
51	The ordered processing of intervening sequences in 23S rRNA ofRhodobacter sphaeroidesrequires RNase J. RNA Biology, 2012, 9, 343-350.	3.1	15
52	Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus. Biochimie, 2012, 94, 1578-1587.	2.6	24
53	CryB from <i>Rhodobacter sphaeroides</i> : a unique class of cryptochromes with new cofactors. EMBO Reports, 2012, 13, 223-229.	4.5	82
54	Small RNAs with a Role in the Oxidative Stress Response of Bacteria. , 2012, , 1-14.		4

#	Article	IF	CITATIONS
55	Effects of the Cryptochrome CryB from Rhodobacter sphaeroides on Global Gene Expression in the Dark or Blue Light or in the Presence of Singlet Oxygen. PLoS ONE, 2012, 7, e33791.	2.5	14
56	Role of the Irr Protein in the Regulation of Iron Metabolism in Rhodobacter sphaeroides. PLoS ONE, 2012, 7, e42231.	2.5	24
57	Singlet Oxygen Stress in Microorganisms. Advances in Microbial Physiology, 2011, 58, 141-173.	2.4	116
58	New aspects of RNA processing in prokaryotes. Current Opinion in Microbiology, 2011, 14, 587-592.	5.1	49
59	Response of the photosynthetic bacterium <i>Rhodobacter sphaeroides</i> to iron limitation and the role of a Fur orthologue in this response. Environmental Microbiology Reports, 2011, 3, 397-404.	2.4	20
60	Anoxygenic photosynthesis and photooxidative stress: a particular challenge for $\langle i \rangle$ Roseobacter $\langle i \rangle$. Environmental Microbiology, 2011, 13, 775-791.	3.8	41
61	Contribution of Hfq to photooxidative stress resistance and global regulation in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2011, 80, 1479-1495.	2.5	55
62	Subcellular localization of RNA degrading proteins and protein complexes in prokaryotes. RNA Biology, 2011, 8, 49-54.	3.1	21
63	The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology (United Kingdom), 2011, 157, 3306-3313.	1.8	14
64	Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Molecular Genetics and Genomics, 2010, 284, 307-318.	2.1	24
65	The archaeal exosome localizes to the membrane. FEBS Letters, 2010, 584, 2791-2795.	2.8	18
66	The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Letters, 2010, 584, 2931-2936.	2.8	24
67	<i>In Vivo</i> Effects on Photosynthesis Gene Expression of Base Pair Exchanges in the Gene Encoding the Lightâ€responsive BLUF Domain of AppA in ⟨i⟩Rhodobacter Sphaeroides⟨/i⟩. Photochemistry and Photobiology, 2010, 86, 882-889.	2.5	8
68	Overlapping Alternative Sigma Factor Regulons in the Response to Singlet Oxygen in <i>Rhodobacter sphaeroides </i> . Journal of Bacteriology, 2010, 192, 2613-2623.	2.2	61
69	The Nop5–L7A–fibrillarin RNP complex and a novel box C/D containing sRNA of Halobacterium salinarum NRC-1. Biochemical and Biophysical Research Communications, 2010, 394, 542-547.	2.1	7
70	The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target <i>rpoS</i> in <i>E. coli</i> is growth phase dependent. RNA Biology, 2009, 6, 584-594.	3.1	34
71	In Vivo Sensitivity of Blue-Light-Dependent Signaling Mediated by AppA/PpsR or PrrB/PrrA in Rhodobacter sphaeroides. Journal of Bacteriology, 2009, 191, 4473-4477.	2.2	17
72	RpoH _{II} Activates Oxidative-Stress Defense Systems and Is Controlled by RpoE in the Singlet Oxygen-Dependent Response in <i>Rhodobacter sphaeroides</i> . Journal of Bacteriology, 2009, 191, 220-230.	2.2	77

#	Article	IF	CITATIONS
73	A cryptochromeâ€ike protein is involved in the regulation of photosynthesis genes in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2009, 74, 990-1003.	2.5	41
74	Photooxidative stressâ€induced and abundant small RNAs in <i>Rhodobacter sphaeroides</i> Microbiology, 2009, 74, 1497-1512.	2.5	90
75	Characterization of an Unusual LOV Domain Protein in the αâ€Proteobacterium <i>Rhodobacter sphaeroides</i>). Photochemistry and Photobiology, 2009, 85, 1254-1259.	2.5	19
76	Chapter 7 RNA Degradation in Archaea and Gramâ€Negative Bacteria Different from Escherichia coli. Progress in Molecular Biology and Translational Science, 2009, 85, 275-317.	1.7	41
77	Regulation of Genes by Light. Advances in Photosynthesis and Respiration, 2009, , 727-741.	1.0	3
78	Rrp4 and Csl4 Are Needed for Efficient Degradation but Not for Polyadenylation of Synthetic and Natural RNA by the Archaeal Exosome. Biochemistry, 2008, 47, 13158-13168.	2.5	29
79	Chapter 19 In Vivo and In Vitro Studies of RNA Degrading Activities in Archaea. Methods in Enzymology, 2008, 447, 381-416.	1.0	8
80	Regulation of Hydrogen Peroxide-Dependent Gene Expression in Rhodobacter sphaeroides: Regulatory Functions of OxyR. Journal of Bacteriology, 2007, 189, 3784-3792.	2.2	31
81	An Archaeal Protein with Homology to the Eukaryotic Translation Initiation Factor 5A Shows Ribonucleolytic Activity*. Journal of Biological Chemistry, 2007, 282, 13966-13976.	3.4	18
82	Global Analysis of mRNA Decay in Halobacterium salinarum NRC-1 at Single-Gene Resolution Using DNA Microarrays. Journal of Bacteriology, 2007, 189, 6936-6944.	2.2	32
83	The AppA and PpsR Proteins from Rhodobacter sphaeroides Can Establish a Redox-Dependent Signal Chain but Fail To Transmit Blue-Light Signals in Other Bacteria. Journal of Bacteriology, 2007, 189, 2274-2282.	2.2	17
84	Protein Synthesis Patterns Reveal a Complex Regulatory Response to Singlet Oxygen inRhodobacter. Journal of Proteome Research, 2007, 6, 2460-2471.	3.7	46
85	Bacterial Regulatory Networks Include Direct Contact of Response Regulator Proteins: Interaction of RegA and NtrX in <i>Rhodobacter capsulatus</i> Biotechnology, 2007, 13, 126-139.	1.0	25
86	A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Molecular Microbiology, 2007, 64, 1090-1104.	2.5	53
87	The phrA gene of Rhodobacter sphaeroides encodes a photolyase and is regulated by singlet oxygen and peroxide in a $\sharp f$ E-dependent manner. Microbiology (United Kingdom), 2007, 153, 1842-1851.	1.8	35
88	Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Molecular Microbiology, 2006, 62, 1076-1089.	2.5	51
89	Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Die Naturwissenschaften, 2006, 93, 259-266.	1.6	149
90	Expression of the trxC Gene of Rhodobacter capsulatus: Response to Cellular Redox Status Is Mediated by the Transcriptional Regulator OxyR. Journal of Bacteriology, 2006, 188, 7689-7695.	2.2	7

#	Article	IF	CITATIONS
91	Light-dependent regulation of photosynthesis genes inRhodobacter sphaeroides2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Molecular Microbiology, 2005, 58, 903-914.	2.5	35
92	The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Structural and Molecular Biology, 2005, 12, 575-581.	8.2	198
93	RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Reports, 2005, 6, 1188-1193.	4.5	82
94	Exoribonuclease R Interacts with Endoribonuclease E and an RNA Helicase in the Psychrotrophic Bacterium Pseudomonas syringae Lz4W. Journal of Biological Chemistry, 2005, 280, 14572-14578.	3.4	114
95	Transcriptome and Physiological Responses to Hydrogen Peroxide of the Facultatively Phototrophic Bacterium Rhodobacter sphaeroides. Journal of Bacteriology, 2005, 187, 7232-7242.	2.2	59
96	Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology (United Kingdom), 2005, 151, 1927-1938.	1.8	111
97	Responses of the Rhodobacter sphaeroides Transcriptome to Blue Light under Semiaerobic Conditions. Journal of Bacteriology, 2004, 186, 7726-7735.	2.2	62
98	CIRCE is not involved in heat-dependent transcription of groESL but in stabilization of the mRNA 5'-end in Rhodobacter capsulatus. Nucleic Acids Research, 2004, 32, 386-396.	14.5	10
99	A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium $\langle i \rangle$ Rhodobacter sphaeroides $\langle i \rangle$ 2.4.1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12306-12311.	7.1	62
100	Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter. Microbiology (United Kingdom), 2004, 150, 3451-3462.	1.8	46
101	Composition and Activity of the <i>Rhodobacter capsulatus</i> Degradosome Vary under Different Oxygen Concentrations. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 148-154.	1.0	22
102	The Glutathione-Glutaredoxin System in Rhodobacter capsulatus: Part of a Complex Regulatory Network Controlling Defense against Oxidative Stress. Journal of Bacteriology, 2004, 186, 6800-6808.	2.2	32
103	Thioredoxin can influence gene expression by affecting gyrase activity. Nucleic Acids Research, 2004, 32, 4563-4575.	14.5	18
104	Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. Microbiology (United) Tj ETQqC) 0 0 rgBT	/Qverlock 10
105	Blue Light Perception in Bacteria. Photosynthesis Research, 2004, 79, 45-57.	2.9	43
106	ORF90, a Gene Required for Photoreactivation in Rhodobacter capsulatus SB1003 Encodes a Cyclobutane Pyrimidine Dimer Photolyase. Photosynthesis Research, 2004, 79, 167-177.	2.9	6
107	Expression of the trxA gene for thioredoxin 1 in Rhodobacter sphaeroides during oxidative stress. Archives of Microbiology, 2003, 180, 484-489.	2.2	31
108	An exosomeâ€ike complex in Sulfolobus solfataricus. EMBO Reports, 2003, 4, 889-893.	4.5	128

#	Article	IF	CITATIONS
109	Thioredoxin 2 is involved in oxidative stress defence and redox-dependent expression of photosynthesis genes in Rhodobacter capsulatus. Microbiology (United Kingdom), 2003, 149, 419-430.	1.8	30
110	Individual gvp transcript segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Nucleic Acids Research, 2002, 30, 5436-5443.	14.5	34
111	Atypical Processing in Domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004 T at a Position Homologous to an rRNA Fragmentation Site in Protozoa. Journal of Bacteriology, 2002, 184, 3176-3185.	2.2	5
112	Dehydrogenases from All Three Domains of Life Cleave RNA. Journal of Biological Chemistry, 2002, 277, 46145-46150.	3.4	43
113	One functional subunit is sufficient for catalytic activity and substrate specificity of <i>Escherichia coli</i> endoribonuclease III artificial heterodimers. FEBS Letters, 2002, 518, 93-96.	2.8	17
114	BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends in Biochemical Sciences, 2002, 27, 497-500.	7.5	380
115	Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system. Molecular Genetics and Genomics, 2002, 267, 202-209.	2.1	13
116	A single flavoprotein, AppA, integrates both redox and light signals in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2002, 45, 827-836.	2.5	164
117	Oxygen-regulated expression of genes for pigment binding proteins in Rhodobacter capsulatus. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 249-53.	1.0	15
118	Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate specificity and cleavage site selection of RNase III. FEBS Letters, 2001, 509, 53-58.	2.8	10
119	An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Research, 2001, 29, 4581-4588.	14.5	79
120	Initial events in the degradation of the polycistronic puf mRNA in Rhodobacter capsulatus and consequences for further processing steps. Molecular Microbiology, 2000, 35, 90-100.	2.5	19
121	Correction of the DNA Sequence of theregB Gene of Rhodobacter capsulatus with Implications for the Membrane Topology of the Sensor Kinase RegB. Journal of Bacteriology, 2000, 182, 818-820.	2.2	10
122	RNase III Processing of Intervening Sequences Found in Helix 9 of 23S rRNA in the Alpha Subclass of <i>Proteobacteria (i). Journal of Bacteriology, 2000, 182, 4719-4729.</i>	2.2	43
123	Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiology Letters, 1999, 179, 1-9.	1.8	77
124	RNA and RNases: Dynamics and catalytic functions of magic molecules. FEMS Microbiology Reviews, 1999, 23, 255-255.	8.6	0
125	mRNA degradation in bacteria. FEMS Microbiology Reviews, 1999, 23, 353-370.	8.6	199
126	Coregulation of the syntheses of bacteriochlorophyll and pigment-binding proteins in Rhodobacter capsulatus. Archives of Microbiology, 1999, 171, 198-204.	2.2	9

#	Article	IF	Citations
127	Transcriptional Regulation of puf and puc Operon Expression in Rhodobacter Capsulatus by the DNA Binding Protein RegA., 1999, , 127-130.		2
128	mRNA degradation in bacteria. FEMS Microbiology Reviews, 1999, 23, 353-370.	8.6	9
129	Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiology Letters, 1999, 179, 1-9.	1.8	1
130	Thioredoxin Is Involved in Oxygen-Regulated Formation of the Photosynthetic Apparatus of Rhodobacter sphaeroides. Journal of Bacteriology, 1999, 181, 100-106.	2.2	29
131	RNase E Enzymes from Rhodobacter capsulatus and Escherichia coli Differ in Context- and Sequence-Dependent In Vivo Cleavage within the Polycistronic puf mRNA. Journal of Bacteriology, 1999, 181, 7621-7625.	2.2	9
132	Integration host factor affects the oxygen-regulated expression of photosynthesis genes in Rhodobacter capsulatus. Molecular Genetics and Genomics, 1998, 258, 297-305.	2.4	15
133	Cloning and characterization of the rpoH gene of Rhodobacter capsulatus. Molecular Genetics and Genomics, 1998, 260, 212-217.	2.4	8
134	Different cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli. Nucleic Acids Research, 1998, 26, 4446-4453.	14.5	33
135	Effect of Oxygen on Translation and Posttranslational Steps in Expression of Photosynthesis Genes in Rhodobacter capsulatus. Journal of Bacteriology, 1998, 180, 3983-3987.	2.2	11
136	Molecular Cloning and Expression Analysis of the <i>Rhodobacter capsulatus sodB</i> Gene, Encoding an Iron Superoxide Dismutase. Journal of Bacteriology, 1998, 180, 5413-5420.	2.2	27
137	Thioredoxin is Essential for Rhodobacter Sphaeroides Growth by Aerobic and Anaerobic Respiration. Microbiology (United Kingdom), 1997, 143, 83-91.	1.8	34
138	Cloning, nucleotide sequence and characterization of the rpoD gene encoding the primary sigma factor of Rhodobacter capsulatus. Gene, 1996, 176, 177-184.	2.2	13
139	Expression of the thioredoxin gene (trxA) inRhodobacter sphaeroides Y is regulated by oxygen. Molecular Genetics and Genomics, 1996, 250, 189-196.	2.4	11
140	Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Molecular Microbiology, 1996, 20, 1165-1178.	2.5	44
141	Identification and Analysis of the rnc Gene for RNase III in Rhodobacter Capsulatus. Nucleic Acids Research, 1996, 24, 1246-1251.	14.5	35
142	Identification of an mRNA element promoting rateâ€limiting cleavage of the polycistronic ⟨i⟩puf⟨/i⟩ mRNA in ⟨i⟩Rhodobacter capsulatus⟨/i⟩ by an enzyme to RNase E. Molecular Microbiology, 1995, 15, 1017-1029.	2.5	46
143	Post-Transcriptional Control of Photosynthesis Gene Expression. Advances in Photosynthesis and Respiration, 1995, , 1235-1244.	1.0	18
144	23S rRNA processing in Rhodobacter capsulatus is not involved in the oxygen-regulated formation of the bacterial photosynthetic apparatus. Archives of Microbiology, 1994, 162, 91-97.	2.2	3

#	Article	IF	CITATIONS
145	Regulation of expression of photosynthesis genes in anoxygenic photosynthetic bacteria. Archives of Microbiology, 1993, 159, 397-404.	2.2	34
146	Identification of a gene required for the oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter capsulatus. Molecular Microbiology, 1993, 10, 749-757.	2.5	15
147	The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Molecular Microbiology, 1993, 9, 1-7.	2.5	81
148	The rate of decay of Rhodobacter capsulatus-spzcific puf mRNA segments is differentially affected by RNase E activity in Escherichia coli. Gene, 1992, 121, 95-102.	2.2	33
149	Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1765-1769.	7.1	51
150	Light and oxygen effects share a common regulatory DNA sequence in Rhodobacter capsulatus. Molecular Microbiology, 1991, 5, 1235-1239.	2.5	15
151	A DNA sequence upstream of the puf operon of Rhodobacter capsulatus is involved in its oxygen-dependent regulation and functions as a protein binding site. Molecular Genetics and Genomics, 1991, 226-226, 167-176.	2.4	39
152	Formation of the B800–850 antenna pigment-protein complex in the strain GK2 of Rhodobacter capsulatus defective in carotenoid synthesis. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 892, 68-74.	1.0	10
153	The influence of bacteriochlorophyll biosynthesis on formation of pigment-binding proteins and assembly of pigment protein complexes in Rhodopseudomonas capsulata. Archives of Microbiology, 1986, 146, 284-291.	2.2	42
154	Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus: Transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6485-6489.	7.1	70
155	Construction of a gene bank of Rhodopseudomonas capsulata using a broad host range DNA cloning system. Archives of Microbiology, 1984, 139, 319-325.	2.2	63
156	The expression of genes encoding proteins of B800-850 antenna pigment complex and ribosomal RNA ofRhodopseudomonas capsulata. FEBS Letters, 1984, 177, 61-65.	2.8	18
157	RNA Processing. , 0, , 158-174.		3