Markus Waelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084224/publications.pdf

Version: 2024-02-01

159585 233421 2,170 59 30 45 citations h-index g-index papers 59 59 59 2056 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracking fluid mixing in epithermal deposits \hat{a} Insights from in-situ \hat{l} 180 and trace element composition of hydrothermal quartz from the giant Cerro de Pasco polymetallic deposit, Peru. Chemical Geology, 2021, 576, 120277.	3.3	8
2	Multiple rejuvenation episodes of a silicic magma reservoir at the origin of the large diatreme-dome complex and porphyry-type mineralization events at Cerro de Pasco (Peru). Lithos, 2020, 376-377, 105766.	1.4	10
3	Organic matter and metal contents within the Cretaceous rocks of the Slata-Guern Halfaya area, North-Central Tunisia: Implication for ore genesis. Ore Geology Reviews, 2019, 113, 103070.	2.7	6
4	Fluid geochemistry of the Serra Pelada Au-Pd-Pt deposit, Caraj \tilde{A}_i s, Brazil: Exceptional metal enrichment caused by deep reaching hydrothermal oxidation. Ore Geology Reviews, 2019, 111, 102991.	2.7	5
5	A treasure chest full of nanogranitoids: an archive to investigate crustal melting in the Bohemian Massif. Geological Society Special Publication, 2019, 478, 13-38.	1.3	16
6	Chemical evolution of ore-forming brines – Basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany. Chemical Geology, 2019, 506, 126-148.	3.3	26
7	Peri-Laurentian, Pinwarian-age oceanic arc crust preserved in the Grenville Province: Insights from the Escoumins supracrustal belt. Precambrian Research, 2018, 311, 37-64.	2.7	11
8	Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. Journal of Geochemical Exploration, 2018, 186, 158-186.	3.2	40
9	Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru). Mineralium Deposita, 2018, 53, 919-946.	4.1	26
10	The last subduction-related volcanism in the northern tip of the Arabian-Nubian Shield: A Neoproterozoic arc preceding the terminal collision of East and West Gondwana. Precambrian Research, 2018, 310, 256-277.	2.7	18
11	Cyclic Dilution of Magmatic Metal-Rich Hypersaline Fluids by Magmatic Low-Salinity Fluid: A Major Process Generating the Giant Epithermal Polymetallic Deposit of Cerro de Pasco, Peru. Economic Geology, 2018, 113, 825-856.	3.8	38
12	Fluid Inclusion Studies in Opaque Ore Minerals: I. Trace Element Content and Physical Properties of Ore Minerals Controlling Textural Features in Transmitted Near-Infrared Light Microscopy. Economic Geology, 2018, 113, 1845-1860.	3.8	11
13	Fluid Inclusion Studies in Opaque Ore Minerals: II. A Comparative Study of Syngenetic Synthetic Fluid Inclusions Hosted in Quartz and Opaque Minerals. Economic Geology, 2018, 113, 1861-1883.	3.8	15
14	Hematite Breccia-Hosted Iron Oxide Copper-Gold Deposits Require Magmatic Fluid Components Exposed to Atmospheric Oxidation: Evidence from Prominent Hill, Gawler Craton, South Australia. Economic Geology, 2018, 113, 597-644.	3.8	21
15	Determination of the Mg/Mn ratio in foraminiferal coatings: An approach to correct Mg/Ca temperatures for Mn-rich contaminant phases. Earth and Planetary Science Letters, 2017, 457, 335-347.	4.4	22
16	Nature and evolution of fluids associated with specularite-bearing Fe and Au-PGE (Jacutinga) mineralization during the Brasiliano orogeny in the eastern São Francisco Craton, Minas Gerais, Brazil. Ore Geology Reviews, 2017, 86, 130-153.	2.7	13
17	LA-ICP-MS analysis of fluid inclusions: contamination effects challenging micro-analysis of elements close to their detection limit. Journal of Analytical Atomic Spectrometry, 2017, 32, 1052-1063.	3.0	31
18	Trace element diffusion and incorporation in quartz during heating experiments. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	31

#	Article	IF	Citations
19	From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 2016, 450, 120-131.	4.4	137
20	Enargite-luzonite hydrothermal vents in Manus Back-Arc Basin: submarine analogues of high-sulfidation epithermal mineralization. Chemical Geology, 2016, 438, 36-57.	3.3	21
21	Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies. Lithos, 2016, 265, 159-176.	1.4	38
22	Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology, 2016, 44, 1015-1018.	4.4	64
23	A new experimental approach to study fluid–rock equilibria at the slab-mantle interface based on the synthetic fluid inclusion technique. American Mineralogist, 2016, 101, 2199-2209.	1.9	5
24	Microanalysis of Fluid Inclusions in Crustal Hydrothermal Systems using Laser Ablation Methods. Elements, 2016, 12, 323-328.	0.5	35
25	Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: insight from <scp>LA</scp> â€ <scp>ICPMS</scp> analysis of fluid inclusions. Geofluids, 2016, 16, 877-908.	0.7	31
26	Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters, 2016, 454, 121-131.	4.4	43
27	Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-hydrothermal transition (Cerro de Pasco district, Peru). Chemical Geology, 2016, 447, 93-116.	3.3	38
28	Sulfide Replacement Processes Revealed by Textural and LA-ICP-MS Trace Element Analyses: Example from the Early Mineralization Stages at Cerro de Pasco, Peru. Economic Geology, 2016, 111, 1347-1367.	3.8	47
29	Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the VarutrAsk rare-element pegmatite (Northern Sweden). Chemical Geology, 2016, 421, 1-16.	3.3	56
30	Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: Insights from trace element systematics of individual fluid inclusions. Chemical Geology, 2016, 429, 44-50.	3.3	40
31	The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	46
32	Platinum partitioning between metal and silicate melts: Core formation, late veneer and the nanonuggets issue. Geochimica Et Cosmochimica Acta, 2015, 162, 183-201.	3.9	34
33	A Middle Ordovician Age for the Laisvall Sandstone-Hosted Pb-Zn Deposit, Sweden: A Response to Early Caledonian Orogenic Activity. Economic Geology, 2015, 110, 1779-1801.	3.8	18
34	OSL-thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology, 2015, 25, 37-48.	1.4	60
35	Magmatic salt melt and vapor: Extreme fluids forming porphyry gold deposits in shallow subvolcanic settings. Geology, 2014, 42, 495-498.	4.4	44
36	Hydrothermal fluids in epithermal and porphyry Au deposits in the Central Slovakia Volcanic Field. Geological Society Special Publication, 2014, 402, 177-206.	1.3	14

#	Article	IF	CITATIONS
37	Red bed and basement sourced fluids recorded in hydrothermal Mn–Fe–As veins, Sailauf (Germany): A LA-ICPMS fluid inclusion study. Chemical Geology, 2014, 363, 22-39.	3.3	32
38	Fluid inclusion measurements by laser ablation sector-field ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1052-1057.	3.0	12
39	Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chemical Geology, 2014, 385, 70-83.	3.3	44
40	Major and trace-element composition and pressure–temperature evolution of rock-buffered fluids in low-grade accretionary-wedge metasediments, Central Alps. Contributions To Mineralogy and Petrology, 2013, 165, 981-1008.	3.1	38
41	Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochimica Et Cosmochimica Acta, 2013, 112, 288-304.	3.9	115
42	Sulfur evolution of the 1991 Pinatubo magmas based on apatite. Journal of Volcanology and Geothermal Research, 2013, 257, 72-89.	2.1	42
43	Late-metamorphic veins record deep ingression of meteoric water: A LA-ICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chemical Geology, 2013, 351, 134-153.	3.3	31
44	Quantifying the effect of solid phase composition and structure on solid–liquid partitioning of siderophile and chalcophile elements in the iron–sulfur system. Chemical Geology, 2013, 357, 85-94.	3.3	4
45	Evolution of unconformity-related MnFeAs vein mineralization, Sailauf (Germany): Insight from major and trace elements in oxide and carbonate minerals. Ore Geology Reviews, 2013, 50, 28-51.	2.7	13
46	Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology, 2013, 41, 679-682.	4.4	78
47	Accurate and precise quantification of major and trace element compositions of calcic–sodic fluid inclusions by combined microthermometry and LA-ICPMS analysis. Chemical Geology, 2012, 334, 144-153.	3.3	19
48	Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochimica Et Cosmochimica Acta, 2012, 91, 140-159.	3.9	110
49	Energy-Efficient Noble Metal Recovery by the Use of Acid-Stable Nanomagnets. Industrial & Description of Engineering Chemistry Research, 2010, 49, 9355-9362.	3.7	30
50	Analyses of lithium-doped and pure magnesium diboride using ultraviolet nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 193-195.	3.0	8
51	Evaluation of different calibration strategies for the analysis of pure copper and zinc samples using femtosecond laser ablation ICP-MS. Analytical and Bioanalytical Chemistry, 2009, 395, 1471-1480.	3.7	21
52	Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 109-112.	2.9	30
53	Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chemical Communications, 2009, , 4862.	4.1	145
54	Expansion phenomena of aerosols generated by laser ablation under helium and argon atmosphere. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 37-41.	2.9	28

#	Article	IF	CITATION
55	Femtosecond laser ablation inductively coupled plasma mass spectrometry: Transport efficiencies of aerosols released under argon atmosphere and the importance of the focus position. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 271-276.	2.9	37
56	Analysis of Laser-Produced Aerosols by Inductively Coupled Plasma Mass Spectrometry: Transport Phenomena and Elemental Fractionation. Analytical Chemistry, 2008, 80, 915-921.	6.5	42
57	Analysis of brass and silicate glass by femtosecond laser ablation inductively coupled plasma mass spectrometry using liquid standard calibration. Journal of Analytical Atomic Spectrometry, 2008, 23, 1285.	3.0	20
58	Capabilities of Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Depth Profiling of Thin Metal Coatings. Analytical Chemistry, 2007, 79, 2325-2333.	6.5	53
59	Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at â^1/4265 and â^1/4200 nm. Journal of Analytical Atomic Spectrometry, 2006, 21, 932-940.	3.0	99