Juan J. de Pablo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084055/publications.pdf

Version: 2024-02-01

7251 14012 23,293 378 80 133 citations h-index g-index papers 385 385 385 17319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424, 411-414.	13.7	1,594
2	Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly. Science, 2008, 321, 936-939.	6.0	1,099
3	Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science, 2005, 308, 1442-1446.	6.0	912
4	Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries. ACS Nano, 2007, 1, 168-175.	7.3	424
5	Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets. Science, 2011, 332, 1297-1300.	6.0	339
6	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	3.5	312
7	Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. Journal of Chemical Physics, 1999, 111, 9509-9516.	1.2	300
8	A coarse grain model for DNA. Journal of Chemical Physics, 2007, 126, 084901.	1.2	271
9	Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics, 2002, 116, 7752-7759.	1.2	252
10	Phase Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. Macromolecules, 2018, 51, 2988-2995.	2.2	241
11	Mechanical Heterogeneities in Model Polymer Glasses at Small Length Scales. Physical Review Letters, 2004, 93, 175501.	2.9	214
12	Ultrastable glasses from in silico vapour deposition. Nature Materials, 2013, 12, 139-144.	13.3	213
13	Topological defects in liquid crystals as templates for molecular self-assembly. Nature Materials, 2016, 15, 106-112.	13.3	211
14	Chirality-selected phase behaviour in ionic polypeptide complexes. Nature Communications, 2015, 6, 6052.	5.8	208
15	Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharmaceutical Research, 1997, 14, 578-590.	1.7	201
16	Chemical Patterns for Directed Self-Assembly of Lamellae-Forming Block Copolymers with Density Multiplication of Features. Macromolecules, 2013, 46, 1415-1424.	2,2	201
17	Monte Carlo Simulations of a Coarse Grain Model for Block Copolymers and Nanocomposites. Macromolecules, 2008, 41, 4989-5001.	2.2	198
18	Poly[<i>n</i>] catenanes: Synthesis of molecular interlocked chains. Science, 2017, 358, 1434-1439.	6.0	196

#	Article	IF	CITATIONS
19	Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. Journal of Chemical Physics, 1996, 105, 4391-4394.	1.2	194
20	Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces. Macromolecules, 2001, 34, 3458-3470.	2.2	192
21	An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization. Journal of Chemical Physics, 2013, 139, 144903.	1.2	191
22	Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4227-4232.	3.3	188
23	Polymer Informatics: Opportunities and Challenges. ACS Macro Letters, 2017, 6, 1078-1082.	2.3	184
24	Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces. Journal of Chemical Physics, 2000, 112, 450-464.	1.2	167
25	Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. Journal of Chemical Physics, 2001, 114, 1405-1413.	1.2	166
26	Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics, 2003, 119, 1165-1173.	1.2	160
27	Density-of-states Monte Carlo method for simulation of fluids. Journal of Chemical Physics, 2002, 116, 8745-8749.	1.2	159
28	A Mesoscale Model of DNA and Its Renaturation. Biophysical Journal, 2009, 96, 1675-1690.	0.2	156
29	Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations. Journal of Chemical Physics, 2000, 113, 2894-2900.	1.2	153
30	Rapid Directed Assembly of Block Copolymer Films at Elevated Temperatures. Macromolecules, 2008, 41, 2759-2761.	2.2	145
31	Fast Calculation of the Density of States of a Fluid by Monte Carlo Simulations. Physical Review Letters, 2003, 90, 035701.	2.9	143
32	Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Physical Review E, 2004, 70, 060901.	0.8	139
33	Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science, 2018, 360, 1434-1438.	6.0	137
34	Interfacial Tension of Polyelectrolyte Complex Coacervate Phases. ACS Macro Letters, 2014, 3, 565-568.	2.3	135
35	Morphology of multi-component polymer systems: single chain in mean field simulation studies. Soft Matter, 2006, 2, 573-583.	1.2	134
36	Fast Computation of Many-Particle Hydrodynamic and Electrostatic Interactions in a Confined Geometry. Physical Review Letters, 2007, 98, 140602.	2.9	134

#	Article	IF	Citations
37	Interpolation in the Directed Assembly of Block Copolymers on Nanopatterned Substrates: Simulation and Experiments. Macromolecules, 2010, 43, 3446-3454.	2.2	131
38	Ternary, Tunable Polyelectrolyte Complex Fluids Driven by Complex Coacervation. Macromolecules, 2014, 47, 3076-3085.	2.2	127
39	MonteÂCarlo Simulation of Coarse Grain Polymeric Systems. Physical Review Letters, 2009, 102, 197801.	2.9	126
40	Coarse-Grained Simulations of Macromolecules: From DNA to Nanocomposites. Annual Review of Physical Chemistry, 2011, 62, 555-574.	4.8	126
41	Tunable structure and dynamics of active liquid crystals. Science Advances, 2018, 4, eaat7779.	4.7	125
42	Calorimetric Solution Properties of Simple Saccharides and Their Significance for the Stabilization of Biological Structure and Function. Journal of Physical Chemistry B, 2000, 104, 8876-8883.	1.2	120
43	Influence of Surfactant Tail Branching and Organization on the Orientation of Liquid Crystals at Aqueousâ°'Liquid Crystal Interfaces. Langmuir, 2005, 21, 6805-6814.	1.6	120
44	Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 17140-17151.	6.6	118
45	Theoretically informed coarse grain simulations of polymeric systems. Journal of Chemical Physics, 2009, 131, 084903.	1.2	113
46	A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8749-8762.	4.0	112
47	Monte Carlo simulation of the chemical potential of polymers in an expanded ensemble. Journal of Chemical Physics, 1995, 103, 2703-2710.	1.2	110
48	Fabrication of Complex Three-Dimensional Nanostructures from Self-Assembling Block Copolymer Materials on Two-Dimensional Chemically Patterned Templates with Mismatched Symmetry. Physical Review Letters, 2006, 96, 036104.	2.9	110
49	Recent advances in machine learning towards multiscale soft materials design. Current Opinion in Chemical Engineering, 2019, 23, 106-114.	3.8	110
50	Hyperparallel tempering Monte Carlo simulation of polymeric systems. Journal of Chemical Physics, 2000, 113, 1276-1282.	1.2	107
51	Monte Carlo simulation of proteins through a random walk in energy space. Journal of Chemical Physics, 2002, 116, 7225-7230.	1.2	107
52	Free Energy of Defects in Ordered Assemblies of Block Copolymer Domains. ACS Macro Letters, 2012, 1, 418-422.	2.3	107
53	Coarse-grained modeling of DNA curvature. Journal of Chemical Physics, 2014, 141, 165103.	1.2	106
54	Density of states simulations of proteins. Journal of Chemical Physics, 2003, 118, 4285-4290.	1.2	102

#	Article	IF	CITATIONS
55	Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets. Langmuir, 2009, 25, 9016-9024.	1.6	102
56	Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nature Communications, 2017, 8, 15854.	5.8	101
57	Nanoparticle self-assembly at the interface of liquid crystal droplets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5297-5302.	3.3	98
58	Characterizing the Three-Dimensional Structure of Block Copolymers <i>via</i> Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano, 2015, 9, 5333-5347.	7.3	98
59	Molecular pathways for defect annihilation in directed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14144-14149.	3. 3	98
60	Antiplasticization and the elastic properties of glass-forming polymer liquids. Soft Matter, 2010, 6, 292-304.	1.2	97
61	Defect Removal in the Course of Directed Self-Assembly is Facilitated in the Vicinity of the Order-Disorder Transition. Physical Review Letters, 2014, 113, 168301.	2.9	97
62	Calculation of local mechanical properties of filled polymers. Physical Review E, 2007, 75, 031803.	0.8	96
63	Heterogeneous dynamics during deformation of a polymer glass. Soft Matter, 2010, 6, 287-291.	1.2	96
64	Criticality and Connectivity in Macromolecular Charge Complexation. Macromolecules, 2016, 49, 8789-8800.	2.2	96
65	Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers. Annual Review of Condensed Matter Physics, 2021, 12, 155-176.	5.2	96
66	SIMULATION OFPHASETRANSITIONS INFLUIDS. Annual Review of Physical Chemistry, 1999, 50, 377-411.	4.8	94
67	Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nature Chemistry, 2018, 10, 659-666.	6.6	93
68	Gel phase formation in dilute triblock copolyelectrolyte complexes. Nature Communications, 2017, 8, 14131.	5.8	92
69	Theoretically informed coarse grain simulations of block copolymer melts: method and applications. Soft Matter, 2009, 5, 4858.	1.2	91
70	Influence of Nanorod Inclusions on Structure and Primitive Path Network of Polymer Nanocomposites at Equilibrium and Under Deformation. Macromolecules, 2011, 44, 1034-1045.	2.2	91
71	Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature, 2012, 485, 86-89.	13.7	91
72	Simulation and prediction of vapour-liquid equilibria for chain molecules. Molecular Physics, 1996, 87, 347-366.	0.8	90

#	Article	IF	CITATIONS
73	Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3444-3459.	2.4	89
74	Influence of Ion Solvation on the Properties of Electrolyte Solutions. Journal of Physical Chemistry B, 2018, 122, 4029-4034.	1.2	88
75	Stabilization of lactate dehydrogenase following freeze thawing and vacuum-drying in the presence of trehalose and borate. Pharmaceutical Research, 1998, 15, 1215-1221.	1.7	87
76	Nonlinear Creep in a Polymer Glass. Macromolecules, 2008, 41, 4969-4977.	2.2	85
77	Symmetric diblock copolymer thin films confined between homogeneous and patterned surfaces: Simulations and theory. Journal of Chemical Physics, 2000, 112, 9996-10010.	1.2	84
78	Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures. Journal of Chemical Physics, 2002, 116, 9939-9951.	1.2	84
79	Targeted sequence design within the coarse-grained polymer genome. Science Advances, 2020, 6, .	4.7	84
80	SSAGES: Software Suite for Advanced General Ensemble Simulations. Journal of Chemical Physics, 2018, 148, 044104.	1.2	83
81	Auxetic metamaterials from disordered networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1384-E1390.	3.3	83
82	Remediation of Line Edge Roughness in Chemical Nanopatterns by the Directed Assembly of Overlying Block Copolymer Films. Macromolecules, 2010, 43, 2334-2342.	2.2	81
83	Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations. Journal of Rheology, 2006, 50, 137-167.	1.3	80
84	A molecular view of vapor deposited glasses. Journal of Chemical Physics, 2011, 134, 194903.	1.2	80
85	Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Science Advances, 2020, 6, .	4.7	80
86	Shear Thickening and Jamming of Dense Suspensions: The "Roll―of Friction. Physical Review Letters, 2020, 124, 248005.	2.9	80
87	Study of volume phase transitions in polymeric nanogels by theoretically informed coarse-grained simulations. Soft Matter, 2011, 7, 5965.	1.2	79
88	Model vapor-deposited glasses: Growth front and composition effects. Journal of Chemical Physics, 2013, 139, 144505.	1.2	79
89	Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers. Advanced Functional Materials, 2015, 25, 6050-6060.	7.8	79
90	Simulation of Defect Reduction in Block Copolymer Thin Films by Solvent Annealing. ACS Macro Letters, 2015, 4, 11-15.	2.3	79

#	Article	IF	CITATIONS
91	Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Science Advances, 2017, 3, eaao1497.	4.7	79
92	DNA Shape Dominates Sequence Affinity in Nucleosome Formation. Physical Review Letters, 2014, 113, 168101.	2.9	78
93	Interplay of structure, elasticity, and dynamics in actin-based nematic materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E124-E133.	3.3	73
94	Turning statistical physics models into materials design engines. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 34-39.	3.3	71
95	Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nature Materials, 2021, 20, 875-882.	13.3	70
96	Monte Carlo simulation of branched and crosslinked polymers. Journal of Chemical Physics, 1996, 104, 4788-4801.	1.2	69
97	Monte Carlo simulation of athermal mesogenic chains: Pure systems, mixtures, and constrained environments. Journal of Chemical Physics, 1997, 106, 9858-9868.	1.2	68
98	Dynamic structure of active nematic shells. Nature Communications, 2016, 7, 13483.	5.8	68
99	Tension-Dependent Free Energies of Nucleosome Unwrapping. ACS Central Science, 2016, 2, 660-666.	5.3	67
100	Anisotropic Vapor-Deposited Glasses: Hybrid Organic Solids. Accounts of Chemical Research, 2019, 52, 407-414.	7.6	67
101	Structural Transitions in Cholesteric Liquid Crystal Droplets. ACS Nano, 2016, 10, 6484-6490.	7.3	66
102	In silico evidence for sequence-dependent nucleosome sliding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9197-E9205.	3.3	65
103	Evolutionary Optimization of Directed Self-Assembly of Triblock Copolymers on Chemically Patterned Substrates. ACS Macro Letters, 2014, 3, 747-752.	2.3	64
104	Anisotropic nanoparticles immersed in a nematic liquid crystal: Defect structures and potentials of mean force. Physical Review E, 2006, 74, 011711.	0.8	63
105	Mechanical properties of antiplasticized polymer nanostructures. Soft Matter, 2010, 6, 2475.	1.2	63
106	Liquid Crystal-Based Emulsions for Synthesis of Spherical and Non-Spherical Particles with Chemical Patches. Journal of the American Chemical Society, 2013, 135, 9972-9975.	6.6	63
107	Controlling Complex Coacervation via Random Polyelectrolyte Sequences. ACS Macro Letters, 2019, 8, 1296-1302.	2.3	63
108	Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors. Journal of Physical Chemistry Letters, 2017, 8, 3380-3386.	2.1	62

#	Article	IF	CITATIONS
109	Cavitation and Crazing in Rod-Containing Nanocomposites. Macromolecules, 2011, 44, 5498-5509.	2.2	61
110	Morphological transitions in liquid crystal nanodroplets. Soft Matter, 2012, 8, 8679.	1.2	61
111	Topological Effects in Isolated Poly[<i>n</i>]catenanes: Molecular Dynamics Simulations and Rouse Mode Analysis. ACS Macro Letters, 2018, 7, 938-943.	2.3	60
112	Graph-Based Approach to Systematic Molecular Coarse-Graining. Journal of Chemical Theory and Computation, 2019, 15, 1199-1208.	2.3	60
113	Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules, 2021, 54, 6878-6890.	2.2	60
114	Cross-stream-line migration in confined flowing polymer solutions: Theory and simulation. Physics of Fluids, 2006, 18, 123101.	1.6	59
115	Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics. Macromolecules, 2013, 46, 6287-6299.	2.2	59
116	Orientational anisotropy in simulated vapor-deposited molecular glasses. Journal of Chemical Physics, 2015, 143, 094502.	1.2	59
117	Transport properties of polymer melts from nonequilibrium molecular dynamics. Journal of Chemical Physics, 1995, 102, 5836-5844.	1.2	58
118	Coarse-grained modeling of DNA oligomer hybridization: Length, sequence, and salt effects. Journal of Chemical Physics, 2014, 141, 035102.	1.2	58
119	Simulation and theory of the swelling of athermal gels. Journal of Chemical Physics, 1997, 106, 793-810.	1.2	57
120	Directed Assembly of a Cylinder-Forming Diblock Copolymer: Topographic and Chemical Patterns. Macromolecules, 2010, 43, 6495-6504.	2.2	57
121	Evolutionary pattern design for copolymer directed self-assembly. Soft Matter, 2013, 9, 11467.	1.2	57
122	Molecular Structure of Canonical Liquid Crystal Interfaces. Journal of the American Chemical Society, 2017, 139, 3841-3850.	6.6	56
123	Density of states of a binary Lennard-Jones glass. Journal of Chemical Physics, 2003, 119, 4405-4408.	1.2	55
124	A molecular view of the role of chirality in charge-driven polypeptide complexation. Soft Matter, 2015, 11, 1525-1538.	1.2	55
125	Molecular Level Differences in Ionic Solvation and Transport Behavior in Ethylene Oxide-Based Homopolymer and Block Copolymer Electrolytes. Journal of the American Chemical Society, 2021, 143, 3180-3190.	6.6	55
126	Viscosity and Glass Transition Temperature of Aqueous Mixtures of Trehalose with Borax and Sodium Chloride. Journal of Physical Chemistry B, 1999, 103, 10243-10249.	1,2	54

#	Article	IF	CITATIONS
127	A new double-rebridging technique for linear polyethylene. Journal of Chemical Physics, 2003, 119, 2456-2462.	1.2	54
128	Behavior of single nanoparticle/homopolymer chain in ordered structures of diblock copolymers. Journal of Chemical Physics, 2003, 118, 11278-11285.	1.2	54
129	Simulations of theoretically informed coarse grain models of polymeric systems. Faraday Discussions, 2010, 144, 111-125.	1.6	53
130	Autonomous materials systems from active liquid crystals. Nature Reviews Materials, 2021, 6, 437-453.	23.3	53
131	Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules, 2021, 54, 105-114.	2.2	53
132	A biased Monte Carlo technique for calculation of the density of states of polymer films. Journal of Chemical Physics, 2002, 116, 7238-7243.	1.2	52
133	Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase. Langmuir, 2012, 28, 6124-6131.	1.6	52
134	Topcoat Approaches for Directed Self-Assembly of Strongly Segregating Block Copolymer Thin Films. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 55-58.	0.1	52
135	Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing. ACS Nano, 2014, 8, 6606-6613.	7.3	52
136	Density functional theory of molecular structure for thin diblock copolymer films on chemically heterogeneous surfaces. Journal of Chemical Physics, 1999, 110, 7483-7490.	1.2	51
137	Morphologies of Linear Triblock Copolymers from Monte Carlo Simulations. Macromolecules, 2011, 44, 5490-5497.	2.2	51
138	Effect of Proline Mutations on the Monomer Conformations of Amylin. Biophysical Journal, 2013, 105, 1227-1235.	0.2	51
139	Nematic-Field-Driven Positioning of Particles in Liquid Crystal Droplets. Physical Review Letters, 2013, 111, 227801.	2.9	50
140	Membrane Permeation versus Amyloidogenicity: A Multitechnique Study of Islet Amyloid Polypeptide Interaction with Model Membranes. Journal of the American Chemical Society, 2017, 139, 137-148.	6.6	49
141	Coarse-Grained Model of the Dynamics of Electrolyte Solutions. Journal of Physical Chemistry B, 2017, 121, 8195-8202.	1.2	49
142	Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses. Journal of Physical Chemistry Letters, 2019, 10, 164-170.	2.1	49
143	Chemical potential and equations of state of hard core chain molecules. Journal of Chemical Physics, 1995, 103, 1946-1956.	1.2	48
144	Blue-phase liquid crystal droplets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13195-13200.	3.3	48

#	Article	IF	CITATIONS
145	Role of Defects in Ion Transport in Block Copolymer Electrolytes. Nano Letters, 2019, 19, 4684-4691.	4.5	48
146	Molecular and multiscale modeling in chemical engineering - current view and future perspectives. AICHE Journal, 2005, 51, 2371-2376.	1.8	47
147	Electronic structure at coarse-grained resolutions from supervised machine learning. Science Advances, 2019, 5, eaav1190.	4.7	47
148	Secondary Structure of Rat and Human Amylin across Force Fields. PLoS ONE, 2015, 10, e0134091.	1.1	47
149	Evolution of fivefold local symmetry during crystal nucleation and growth in dense hard-sphere packings. Soft Matter, 2012, 8, 844-858.	1.2	46
150	Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase. ACS Central Science, 2021, 7, 164-174.	5. 3	46
151	Broadband Liquid Crystal Tunable Metasurfaces in the Visible: Liquid Crystal Inhomogeneities Across the Metasurface Parameter Space. ACS Photonics, 2021, 8, 567-575.	3.2	46
152	Comparing Solvophobic and Multivalent Induced Collapse in Polyelectrolyte Brushes. ACS Macro Letters, 2017, 6, 155-160.	2.3	45
153	Statistical calculation of elastic moduli for atomistic models. Physical Review B, 2005, 71, .	1.1	44
154	Stimuliâ€Responsive Cubosomes Formed from Blue Phase Liquid Crystals. Advanced Materials, 2015, 27, 6892-6898.	11.1	44
155	Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules, 2018, 51, 6717-6723.	2.2	44
156	Thermodynamics and Structure of Poly[<i>n</i>]catenane Melts. Macromolecules, 2020, 53, 3390-3408.	2.2	44
157	Machine learning active-nematic hydrodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	44
158	Phase equilibria and clustering in size-asymmetric primitive model electrolytes. Journal of Chemical Physics, 2001, 114, 1727-1731.	1.2	43
159	Theoretically informed entangled polymer simulations: linear and non-linear rheology of melts. Soft Matter, 2013, 9, 2030.	1.2	43
160	Quantitative Three-Dimensional Characterization of Block Copolymer Directed Self-Assembly on Combined Chemical and Topographical Prepatterned Templates. ACS Nano, 2017, 11, 1307-1319.	7.3	43
161	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
162	Bondâ€bias simulation of phase equilibria for strongly associating fluids. Journal of Chemical Physics, 1994, 101, 1477-1489.	1.2	42

#	Article	IF	Citations
163	Solubility of Small Molecules and Their Mixtures in Polyethylene. Journal of Physical Chemistry B, 1999, 103, 3539-3544.	1.2	42
164	Dynamics and Deformation Response of Rod-Containing Nanocomposites. Macromolecules, 2012, 45, 543-554.	2.2	42
165	A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology. Journal of Chemical Physics, 2015, 143, 243147.	1.2	42
166	Mesoscale martensitic transformation in single crystals of topological defects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10011-10016.	3.3	42
167	Photostability Can Be Significantly Modulated by Molecular Packing in Glasses. Journal of the American Chemical Society, 2016, 138, 11282-11289.	6.6	41
168	Fluctuating hydrodynamics of chiral active fluids. Nature Physics, 2021, 17, 1260-1269.	6.5	41
169	An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution. Biophysical Journal, 2015, 109, 1009-1018.	0.2	40
170	Presentation of Large DNA Molecules for Analysis as Nanoconfined Dumbbells. Macromolecules, 2013, 46, 8356-8368.	2.2	39
171	Age and structure of a model vapour-deposited glass. Nature Communications, 2016, 7, 13062.	5 . 8	39
172	Adaptive enhanced sampling by force-biasing using neural networks. Journal of Chemical Physics, 2018, 148, 134108.	1,2	39
173	Dynamics of poly[n]catenane melts. Journal of Chemical Physics, 2020, 152, 214901.	1.2	39
174	Structure of binary polymer blends: Multiple time step hybrid Monte Carlo simulations and selfâ€consistent integralâ€equation theory. Journal of Chemical Physics, 1995, 103, 8247-8256.	1,2	38
175	Defect Annihilation Pathways in Directed Assembly of Lamellar Block Copolymer Thin Films. ACS Nano, 2018, 12, 9974-9981.	7.3	38
176	Pseudo-ensemble simulations and Gibbs–Duhem integrations for polymers. Journal of Chemical Physics, 1997, 106, 2911-2923.	1.2	37
177	Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter, 2011, 7, 6828.	1.2	37
178	Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. Science Advances, 2021, 7, .	4.7	37
179	Aggregation and Solubility of a Model Conjugated Donor–Acceptor Polymer. Journal of Physical Chemistry Letters, 2018, 9, 4802-4807.	2.1	36
180	Intrinsic Ion Transport Properties of Block Copolymer Electrolytes. ACS Nano, 2020, 14, 8902-8914.	7.3	36

#	Article	IF	Citations
181	Critical behavior of lattice polymers studied by Monte Carlo simulations. Journal of Chemical Physics, 2000, 113, 5954-5957.	1.2	35
182	Thermodynamic and transport properties of nitrogen and butane mixtures. Molecular Physics, 2000, 98, 43-55.	0.8	35
183	Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter, 2010, 6, 896.	1.2	35
184	Drop splashing is independent of substrate wetting. Physics of Fluids, 2018, 30, .	1.6	35
185	Morphology of Lamellae-Forming Block Copolymer Films between Two Orthogonal Chemically Nanopatterned Striped Surfaces. Physical Review Letters, 2012, 108, 065502.	2.9	34
186	A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. Journal of Chemical Physics, 2017, 146, 014903.	1.2	34
187	Perspective: Evolutionary design of granular media and block copolymer patterns. APL Materials, 2016, 4, .	2.2	33
188	A theory of interactions between polarizable dielectric spheres. Journal of Colloid and Interface Science, 2016, 469, 237-241.	5.0	33
189	Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes. Macromolecules, 2021, 54, 2266-2276.	2.2	33
190	NlogN method for hydrodynamic interactions of confined polymer systems: Brownian dynamics. Journal of Chemical Physics, 2006, 125, 164906.	1.2	32
191	Flux Tempered Metadynamics. Journal of Statistical Physics, 2011, 145, 932-945.	0.5	32
192	Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter, 2012, 8, 1443-1450.	1.2	32
193	Molecular modeling of vapor-deposited polymer glasses. Journal of Chemical Physics, 2014, 140, 204504.	1.2	32
194	Monte Carlo simulation of polymer chain collapse in an athermal solvent. Journal of Chemical Physics, 1997, 106, 1288-1290.	1.2	31
195	Measurement of the Azimuthal Anchoring Energy of Liquid Crystals in Contact with Oligo(ethylene) Tj ETQq1 1 C Langmuir, 2006, 22, 4654-4659.).784314 ı 1.6	gBT /Overlo
196	Understanding Atomic-Scale Behavior of Liquid Crystals at Aqueous Interfaces. Journal of Chemical Theory and Computation, 2017, 13, 237-244.	2.3	31
197	Ion Distribution in Microphase-Separated Copolymers with Periodic Dielectric Permittivity. Macromolecules, 2018, 51, 1986-1991.	2.2	31
198	The Free Energy Landscape of Internucleosome Interactions and Its Relation to Chromatin Fiber Structure. ACS Central Science, 2019, 5, 341-348.	5.3	31

#	Article	IF	CITATIONS
199	OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations. PLoS Computational Biology, 2021, 17, e1008308.	1.5	31
200	Calculation of interfacial tension from density of states. Journal of Chemical Physics, 2003, 118, 4226-4229.	1.2	30
201	Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring. Journal of Chemical Physics, 2016, 144, 084905.	1.2	30
202	Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15922-15932.	4.0	30
203	Light-activated helical inversion in cholesteric liquid crystal microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4334-4339.	3.3	30
204	1CPN: A coarse-grained multi-scale model of chromatin. Journal of Chemical Physics, 2019, 150, 215102.	1.2	29
205	Organized assemblies of colloids formed at the poles of micrometer-sized droplets of liquid crystal. Soft Matter, 2014, 10, 8821-8828.	1.2	28
206	Inherent structure energy is a good indicator of molecular mobility in glasses. Soft Matter, 2016, 12, 5898-5904.	1.2	28
207	Bottom-Up Meets Top-Down: The Crossroads ofÂMultiscale Chromatin Modeling. Biophysical Journal, 2020, 118, 2057-2065.	0.2	28
208	Hydrodynamic effects on the translocation rate of a polymer through a pore. Journal of Chemical Physics, 2009, 131, 044904.	1.2	27
209	Prolate and oblate chiral liquid crystal spheroids. Science Advances, 2020, 6, eaba6728.	4.7	27
210	Reversible Switching of Liquid Crystalline Order Permits Synthesis of Homogeneous Populations of Dipolar Patchy Microparticles. Advanced Functional Materials, 2014, 24, 6219-6226.	7.8	26
211	Coarse-Grained Ions for Nucleic Acid Modeling. Journal of Chemical Theory and Computation, 2015, 11, 5436-5446.	2.3	26
212	Derivation of Multiple Covarying Material and Process Parameters Using Physics-Based Modeling of X-ray Data. Macromolecules, 2017, 50, 7783-7793.	2.2	26
213	Liquid Crystalline and Isotropic Coacervates of Semiflexible Polyanions and Flexible Polycations. Macromolecules, 2019, 52, 5140-5156.	2.2	26
214	Low-temperature anomalies of a vapor deposited glass. Physical Review Materials, 2018, 2, .	0.9	26
215	Monte Carlo simulations and dynamic field theory for suspended particles in liquid crystalline systems. Journal of Chemical Physics, 2003, 119, 2444-2455.	1.2	25
216	Segregation of liquid crystal mixtures in topological defects. Nature Communications, 2017, 8, 15064.	5.8	25

#	Article	IF	CITATIONS
217	Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13400-13405.	3.3	25
218	Sculpting stable structures in pure liquids. Science Advances, 2019, 5, eaav4283.	4.7	25
219	Toward wide-spectrum antivirals against coronaviruses: Molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors. Science Advances, 2022, 8, eabj4526.	4.7	25
220	Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells. ACS Applied Materials & Delocation (10043-10052).	4.0	24
221	Qresp, a tool for curating, discovering and exploring reproducible scientific papers. Scientific Data, 2019, 6, 190002.	2.4	24
222	Perfection in Nucleation and Growth of Blue-Phase Single Crystals: Small Free-Energy Required to Self-Assemble at Specific Lattice Orientation. ACS Applied Materials & Interfaces, 2019, 11, 9487-9495.	4.0	24
223	Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure. Soft Matter, 2021, 17, 2985-2993.	1.2	24
224	Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions. Soft Matter, 2016, 12, 8595-8605.	1.2	23
225	Patterned surface anchoring of nematic droplets at miscible liquid–liquid interfaces. Soft Matter, 2017, 13, 5714-5723.	1.2	23
226	Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 37618-37624.	4.0	23
227	Anisotropic Coarse-Grained Model for Conjugated Polymers: Investigations into Solution Morphologies. Macromolecules, 2021, 54, 3780-3789.	2.2	23
228	Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields. Journal of Chemical Physics, 2015, 143, 044107.	1.2	22
229	Directed Self-Assembly of Colloidal Particles onto Nematic Liquid Crystalline Defects Engineered by Chemically Patterned Surfaces. ACS Nano, 2017, 11, 6492-6501.	7.3	22
230	Early-stage human islet amyloid polypeptide aggregation: Mechanisms behind dimer formation. Journal of Chemical Physics, 2018, 149, 025101.	1.2	22
231	Enzyme-Induced Kinetic Control of Peptide–Polymer Micelle Morphology. ACS Macro Letters, 2019, 8, 676-681.	2.3	22
232	Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers. Macromolecules, 2020, 53, 482-490.	2.2	22
233	Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?. ACS Applied Materials & Semiconductor?. ACS Applied Materials & Semiconductor?. ACS Applied Materials & Semiconductor?.	4.0	22
234	Microphase Separation in Polyelectrolyte Blends: Weak Segregation Theory and Relation to Nuclear "Pasta― Macromolecules, 2020, 53, 1281-1292.	2.2	22

#	Article	IF	CITATIONS
235	Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films. ACS Central Science, 2017, 3, 415-424.	5.3	21
236	Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates. ACS Macro Letters, 2020, 9, 1318-1324.	2.3	21
237	Dissociation of salts in water under pressure. Nature Communications, 2020, 11, 3037.	5.8	21
238	Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes. Journal of Materials Chemistry A, 2021, 9, 9937-9951.	5.2	21
239	A Molecular View of the Dynamics of dsDNA Packing Inside Viral Capsids in the Presence of Ions. Biophysical Journal, 2017, 112, 1302-1315.	0.2	20
240	Oligomers as Triggers for Responsive Liquid Crystals. Langmuir, 2018, 34, 10092-10101.	1.6	20
241	Soft crystal martensites: An in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation. Science Advances, 2020, 6, eaay5986.	4.7	20
242	A new method for generating volume changes in isobaric-isothermal Monte Carlo simulations of flexible molecules. Macromolecular Theory and Simulations, 1995, 4, 691-707.	0.6	19
243	Simulation of swelling of model polymeric gels by subcritical and supercritical solvents. Journal of Chemical Physics, 1999, 110, 1290-1298.	1.2	19
244	Effects of charge, size, and shape-asymmetry on the phase behavior of model electrolytes. Journal of Chemical Physics, 2002, 116, 2967-2972.	1.2	19
245	Anchoring Energies of Liquid Crystals Measured on Surfaces Presenting Oligopeptides. Langmuir, 2006, 22, 7776-7782.	1.6	19
246	Directed assembly of copolymer materials on patterned substrates: Balance of simple symmetries in complex structures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2589-2604.	2.4	19
247	Positioning colloids at the surfaces of cholesteric liquid crystal droplets. Soft Matter, 2016, 12, 8781-8789.	1.2	19
248	A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers. Macromolecules, 2018, 51, 2110-2124.	2.2	19
249	Thermally reconfigurable Janus droplets with nematic liquid crystalline and isotropic perfluorocarbon oil compartments. Soft Matter, 2019, 15, 2580-2590.	1.2	19
250	Segmental dynamics in a blend of alkanes: Nuclear magnetic resonance experiments and molecular dynamics simulation. Journal of Chemical Physics, 2002, 116, 8209-8217.	1.2	18
251	Fast relaxation and elasticity-related properties of trehalose-glycerol mixtures. Soft Matter, 2012, 8, 4936.	1.2	18
252	Planarity and multiple components promote organic photovoltaic efficiency by improving electronic transport. Physical Chemistry Chemical Physics, 2016, 18, 31388-31399.	1.3	18

#	Article	IF	CITATIONS
253	A Hybrid Human-computer Approach to the Extraction of Scientific Facts from the Literature. Procedia Computer Science, 2016, 80, 386-397.	1.2	18
254	Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films. Soft Matter, 2017, 13, 8999-9006.	1.2	18
255	Towards a Hybrid Human-Computer Scientific Information Extraction Pipeline., 2017, , .		18
256	Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers. Polymers, 2017, 9, 88.	2.0	18
257	Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods. Journal of Chemical Theory and Computation, 2018, 14, 2881-2888.	2.3	18
258	Free energy of metal-organic framework self-assembly. Journal of Chemical Physics, 2019, 150, 104502.	1.2	18
259	Degenerate conic anchoring and colloidal elastic dipole-hexadecapole transformations. Nature Communications, 2019, 10, 1000.	5.8	18
260	Ideal isotropic auxetic networks from random networks. Soft Matter, 2019, 15, 8084-8091.	1.2	18
261	Sculpted grain boundaries in soft crystals. Science Advances, 2019, 5, eaax9112.	4.7	18
262	Defect structures and three-body potential of the mean force for nanoparticles in a nematic host. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1033-1040.	2.4	17
263	Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form. Journal of Chemical Physics, 2014, 140, 225103.	1.2	17
264	Basis Function Sampling: A New Paradigm for Material Property Computation. Physical Review Letters, 2014, 113, 190602.	2.9	17
265	Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database. Journal of Chemical Education, 2016, 93, 1561-1568.	1.1	17
266	Pair and many-body interactions between ligated Au nanoparticles. Journal of Chemical Physics, 2019, 150, 044904.	1.2	17
267	Direct Observation of Liquid Crystal Droplet Configurational Transitions using Optical Tweezers. Langmuir, 2020, 36, 7074-7082.	1.6	17
268	Spatiotemporal Formation and Growth Kinetics of Polyelectrolyte Complex Micelles with Millisecond Resolution. ACS Macro Letters, 2020, 9, 1674-1680.	2.3	17
269	Anisotropic friction and excluded volume effects in freely jointed bead–rod polymer chain models. Journal of Chemical Physics, 1994, 101, 5293-5304.	1.2	16
270	Dipole-induced self-assembly of helical \hat{l}^2 -peptides. Journal of Chemical Physics, 2008, 129, 015102.	1.2	16

#	Article	IF	CITATIONS
271	Heterogeneous Segmental Dynamics during Creep and Constant Strain Rate Deformations of Rod-Containing Polymer Nanocomposites. Macromolecules, 2012, 45, 8467-8481.	2.2	16
272	Controlled deformation of vesicles by flexible structured media. Science Advances, 2016, 2, e1600978.	4.7	16
273	<i>In Silico</i> Measurement of Elastic Moduli of Nematic Liquid Crystals. Physical Review Letters, 2018, 120, 107801.	2.9	16
274	Tenfold increase in the photostability of an azobenzene guest in vapor-deposited glass mixtures. Journal of Chemical Physics, 2018, 149, 204503.	1.2	16
275	Simulations of splashing high and low viscosity droplets. Physics of Fluids, 2018, 30, .	1.6	16
276	Neural Network Sampling of the Free Energy Landscape for Nitrogen Dissociation on Ruthenium. Journal of Physical Chemistry Letters, 2021, 12, 2954-2962.	2.1	16
277	Phase equilibria in binary polymer blends: Integral equation approach. Journal of Chemical Physics, 1998, 109, 10042-10052.	1.2	15
278	Structural Correlations and Percolation in Twisted Perylene Diimides Using a Simple Anisotropic Coarse-Grained Model. Journal of Chemical Theory and Computation, 2018, 14, 6495-6504.	2.3	15
279	Generalised Navier boundary condition for a volume of fluid approach using a finite-volume method. Physics of Fluids, 2019, 31, 021203.	1.6	15
280	Defect Spirograph: Dynamical Behavior of Defects in Spatially Patterned Active Nematics. Physical Review Letters, 2021, 126, 227801.	2.9	15
281	Cross-sectional Imaging of Block Copolymer Thin Films on Chemically Patterned Surfaces. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 149-154.	0.1	14
282	Mesoscale structure of chiral nematic shells. Soft Matter, 2016, 12, 8983-8989.	1.2	14
283	Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals. Langmuir, 2017, 33, 12516-12524.	1.6	14
284	Parallel <i>O</i> (<i>N</i>) Stokes' solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries. Journal of Chemical Physics, 2017, 146, 244114.	1.2	14
285	Combined Force-Frequency Sampling for Simulation of Systems Having Rugged Free Energy Landscapes. Journal of Chemical Theory and Computation, 2020, 16, 1448-1455.	2.3	14
286	Scaling Theory of Neutral Sequence-Specific Polyampholytes. Macromolecules, 2021, 54, 3232-3246.	2.2	14
287	Tetranucleosome Interactions Drive Chromatin Folding. ACS Central Science, 2021, 7, 1019-1027.	5.3	14
288	Sequence Blockiness Controls the Structure of Polyampholyte Necklaces. ACS Macro Letters, 2021, 10, 1048-1054.	2.3	14

#	Article	IF	CITATIONS
289	Thermodynamic modeling of concentrated aqueous electrolyte and nonelectrolyte solutions. AICHE Journal, 1995, 41, 1563-1571.	1.8	13
290	Monte-Carlo simulation of ternary blends of block copolymers and homopolymers. Journal of Chemical Physics, 2011, 135, 114904.	1.2	13
291	Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science, 2016, 2, 614-620.	5. 3	13
292	An $\langle i \rangle O \langle i \rangle (\langle i \rangle N \langle i \rangle)$ and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles. Journal of Chemical Physics, 2016, 145, .	1.2	13
293	Spherical nematic shells with a prolate ellipsoidal core. Soft Matter, 2017, 13, 7465-7472.	1.2	13
294	Optimizing self-consistent field theory block copolymer models with X-ray metrology. Molecular Systems Design and Engineering, 2018, 3, 376-389.	1.7	13
295	Emergence of Radial Tree of Bend Stripes in Active Nematics. Physical Review X, 2019, 9, .	2.8	13
296	Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach. Journal of Chemical Physics, 2015, 143, 243157.	1.2	13
297	Logic operations with active topological defects. Science Advances, 2022, 8, eabg9060.	4.7	13
298	Applications of molecular modeling in nanolithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 3371.	1.6	12
299	Homeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets. Soft Matter, 2015, 11, 5067-5076.	1.2	12
300	Fibrillar dimer formation of islet amyloid polypeptides. AIP Advances, 2015, 5, .	0.6	12
301	Reconfigurable Multicompartment Emulsion Drops Formed by Nematic Liquid Crystals and Immiscible Perfluorocarbon Oils. Langmuir, 2019, 35, 16312-16323.	1.6	12
302	Understanding Ion Mobility in P2VP/NMP+I– Polymer Electrolytes: A Combined Simulation and Experimental Study. Macromolecules, 2020, 53, 2783-2792.	2.2	12
303	Sculpting bespoke mountains: Determining free energies with basis expansions. Journal of Chemical Physics, 2015, 143, 044101.	1.2	11
304	A molecular view of DNA-conjugated nanoparticle association energies. Soft Matter, 2015, 11, 1919-1929.	1.2	11
305	Design of surface patterns with optimized thermodynamic driving forces for the directed self-assembly of block copolymers in lithographic applications. Molecular Systems Design and Engineering, 2017, 2, 567-580.	1.7	11
306	Hydrodynamic interactions in topologically linked ring polymers. Physical Review E, 2020, 102, 032502.	0.8	11

#	Article	IF	Citations
307	Molecular characterization of COVID-19 therapeutics: luteolin as an allosteric modulator of the spike protein of SARS-CoV-2. Molecular Systems Design and Engineering, 2022, 7, 58-66.	1.7	11
308	Harnessing Peptide Binding to Capture and Reclaim Phosphate. Journal of the American Chemical Society, 2021, 143, 4440-4450.	6.6	11
309	Molecular Mass Dependence of Interfacial Tension in Complex Coacervation. Physical Review Letters, 2021, 126, 237801.	2.9	11
310	Simulation and prediction of vapour-liquid equilibria for chain molecules. , 0, .		11
311	Combining Particle-Based Simulations and Machine Learning to Understand Defect Kinetics in Thin Films of Symmetric Diblock Copolymers. Macromolecules, 2021, 54, 10074-10085.	2.2	11
312	Efficient Free Energy Calculation of Biomolecules from Diffusion-Biased Molecular Dynamics. Journal of Chemical Theory and Computation, 2012, 8, 4657-4662.	2.3	10
313	Complex coacervation of statistical polyelectrolytes: role of monomer sequences and formation of inhomogeneous coacervates. Molecular Systems Design and Engineering, 2021, 6, 790-804.	1.7	10
314	Control of Monodomain Polymer-Stabilized Cuboidal Nanocrystals of Chiral Nematics by Confinement. ACS Nano, 2021, 15, 15972-15981.	7.3	10
315	Nonequilibrium statistical thermodynamics of multicomponent interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
316	Water Flux Induced Reorientation of Liquid Crystals. ACS Central Science, 2017, 3, 1345-1349.	5. 3	9
317	Layered nested Markov chain Monte Carlo. Journal of Chemical Physics, 2018, 149, 072326.	1.2	9
318	Effect of temperature on the structure and dynamics of triblock polyelectrolyte gels. Journal of Chemical Physics, 2018, 149, 163310.	1.2	9
319	Transformation between elastic dipoles, quadrupoles, octupoles, and hexadecapoles driven by surfactant self-assembly in nematic emulsion. Science Advances, 2021, 7, .	4.7	9
320	Stability and molecular pathways to the formation of spin defects in silicon carbide. Nature Communications, 2021, 12, 6325.	5.8	9
321	lonic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation. ACS Nano, 2022, 16, 3768-3775.	7.3	9
322	Physical verification and manufacturing of contact/via layers using grapho-epitaxy DSA processes. Proceedings of SPIE, 2014, , .	0.8	8
323	Self-consistent description of electrokinetic phenomena in particle-based simulations. Journal of Chemical Physics, 2015, 143, 014108.	1.2	8
324	Role of translational entropy in spatially inhomogeneous, coarse-grained models. Journal of Chemical Physics, $2018,148,$.	1,2	8

#	Article	IF	CITATIONS
325	Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders. Journal of Chemical Physics, 2020, 152, 204109.	1.2	8
326	Cuboidal liquid crystal phases under multiaxial geometrical frustration. Soft Matter, 2020, 16, 870-880.	1.2	8
327	Code interoperability extends the scope of quantum simulations. Npj Computational Materials, 2021, 7,	3.5	8
328	Observation of the pressure effect in simulations of droplets splashing on a dry surface. Physical Review Fluids, $2018, 3, \ldots$	1.0	8
329	Shape control and density multiplication of cylinder-forming ternary block copolymer-homopolymer blend thin films on chemical patterns. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6B24-C6B29.	0.6	7
330	Graphoepitaxial assembly of cylinder forming block copolymers in cylindrical holes. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 430-441.	2.4	7
331	Nanocrystalline Oligo(ethylene sulfide)- <i>b</i> poly(ethylene glycol) Micelles: Structure and Stability. Macromolecules, 2018, 51, 9538-9546.	2.2	7
332	Stress-activated constraints in dense suspension rheology. Physical Review Fluids, 2022, 7, .	1.0	7
333	Characterization of the interactions between synthetic nematic LCs and model cell membranes. Liquid Crystals, 2007, 34, 1387-1396.	0.9	6
334	Extracting collective motions underlying nucleosome dynamics via nonlinear manifold learning. Journal of Chemical Physics, 2019, 150, 054902.	1.2	6
335	Liquid Crystal Films as Active Substrates for Nanoparticle Control. ACS Applied Nano Materials, 2021, 4, 6700-6708.	2.4	6
336	Shape induced segregation and anomalous particle transport under spherical confinement. Physics of Fluids, 2020, 32, 053307.	1.6	6
337	Monte carlo simulation of polymers in steady potential flows. Macromolecular Theory and Simulations, 1994, 3, 177-184.	0.6	5
338	Visualization and simulation of the transfer process of indexâ€matched silica microparticle inks for gravure printing. AICHE Journal, 2017, 63, 1419-1429.	1.8	5
339	Structural transformations in tetravalent nematic shells induced by a magnetic field. Soft Matter, 2020, 16, 8169-8178.	1.2	5
340	Vapor-Deposited Glasses Highlight the Role of Density in Photostability. Journal of Physical Chemistry B, 2020, 124, 6112-6120.	1.2	5
341	Directing the far-from-equilibrium assembly of nanoparticles in confined liquid crystals by hydrodynamic fields. Soft Matter, 2021, 17, 3463-3472.	1.2	5
342	Monte Carlo Methods for Polymeric Systems. Advances in Chemical Physics, 0, , 337-367.	0.3	5

#	Article	IF	CITATIONS
343	Characterization of the Interfacial Orientation and Molecular Conformation in a Glass-Forming Organic Semiconductor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3455-3466.	4.0	5
344	Collective Variables for Free Energy Surface Tailoring: Understanding and Modifying Functionality in Systems Dominated by Rare Events. Journal of Physical Chemistry Letters, 2022, 13, 2830-2837.	2.1	5
345	Programming Solitons in Liquid Crystals Using Surface Chemistry. Langmuir, 2022, 38, 3575-3584.	1.6	5
346	A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules, 2022, 55, 4146-4158.	2.2	5
347	Catapulting of topological defects through elasticity bands in active nematics. Soft Matter, 2022, 18, 5271-5281.	1.2	5
348	A Generalizable Approach to Direct the Selfâ€Assembly of Functional Blueâ€Phase Liquid Crystals. Advanced Functional Materials, 2022, 32, .	7.8	5
349	Multiple free energy minima in systems of confined tethered polymersâ€"toward soft nanomechanical bistable elements. Soft Matter, 2009, 5, 3694.	1.2	4
350	Surface Adsorption in Nonpolarizable Atomic Models. Journal of Chemical Theory and Computation, 2014, 10, 5616-5624.	2.3	4
351	Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements. Macromolecules, 2018, 51, 2418-2427.	2.2	4
352	Towards hybrid human-machine scientific information extraction. , 2018, , .		4
353	Evolutionary strategy for inverse charge measurements of dielectric particles. Journal of Chemical Physics, 2018, 148, 234302.	1.2	4
354	Structure and proton conduction in sulfonated poly(ether ether ketone) semi-permeable membranes: a multi-scale computational approach. Physical Chemistry Chemical Physics, 2019, 21, 9362-9375.	1.3	4
355	Strongly Chiral Liquid Crystals in Nanoemulsions. Small, 2022, , 2105835.	5.2	4
356	Bottom-Up Multiscale Approach to Estimate Viscoelastic Properties of Entangled Polymer Melts with High Glass Transition Temperature. Macromolecules, 0, , .	2.2	4
357	Metastable doubly threaded [3]rotaxanes with a large macrocycle. Chemical Science, 2022, 13, 5333-5344.	3.7	4
358	Ultrathin initiated chemical vapor deposition polymer interfacial energy control for directed self-assembly hole-shrink applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061804.	0.6	3
359	Influence of Homopolymer Addition in Templated Assembly of Cylindrical Block Copolymers. ACS Nano, 2019, 13, 4073-4082.	7.3	3
360	Formation, Stability, and Annihilation of the Stitched Morphology in Block Copolymer Thin Films. Macromolecules, 2020, 53, 10446-10456.	2.2	3

#	Article	IF	CITATIONS
361	An in situ shearing x-ray measurement system for exploring structures and dynamics at the solid–liquid interface. Review of Scientific Instruments, 2020, 91, 013908.	0.6	3
362	Nucleation and growth of blue phase liquid crystals on chemically-patterned surfaces: a surface anchoring assisted blue phase correlation length. Molecular Systems Design and Engineering, 2021, 6, 534-544.	1.7	3
363	Is the "Bricks-and-Mortar―Mesophase Bicontinuous? Dynamic Simulations of Miktoarm Block Copolymer/Homopolymer Blends. Macromolecules, 2022, 55, 745-758.	2.2	3
364	Active learning of polarizable nanoparticle phase diagrams for the guided design of triggerable self-assembling superlattices. Molecular Systems Design and Engineering, 2022, 7, 350-363.	1.7	3
365	Tuning the mechanical impedance of disordered networks for impact mitigation. Soft Matter, 2022, 18, 2039-2045.	1.2	3
366	Sustainable Polymers Square Table. Macromolecules, 2021, 54, 8257-8258.	2.2	2
367	Thickness dependence of forming single crystal by liquid-crystalline blue phase on chemically patterned surface. , 2018, , .		2
368	From nematic shells to nematic droplets: energetics and defect transitions. Soft Matter, 2022, , .	1.2	2
369	Parameter estimation for X-ray scattering analysis with Hamiltonian Markov Chain Monte Carlo. Journal of Synchrotron Radiation, 2022, 29, 721-731.	1.0	2
370	Sensors: Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers (Adv. Funct. Mater. 38/2015). Advanced Functional Materials, 2015, 25, 6147-6147.	7.8	1
371	Educating local radial basis functions using the highest gradient of interest in three dimensional geometries. International Journal for Numerical Methods in Engineering, 2017, 110, 603-617.	1.5	1
372	Fluctuations and phase transitions of uniaxial and biaxial liquid crystals using a theoretically informed Monte Carlo and a Landau free energy density. Journal of Physics Condensed Matter, 2019, 31, 175101.	0.7	1
373	Studying the effects of chemistry and geometry on DSA hole-shrink process in three dimensions. , 2018, , .		1
374	Density of States Simulations of Proteins, Liquid Crystals, and DNA. AIP Conference Proceedings, 2003,	0.3	0
375	Nanoscale Pattern Formation in Polyelectrolyte Gels. Materials Research Society Symposia Proceedings, 2009, 1234, 1.	0.1	O
376	Association Free Energy of DNA Oligonucleotides from Expanded Ensembles. , 2010, , .		0
377	Liquid Crystals: Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions (Small) Tj ETQq1 1 0.78	4314 rgBT 5.2	Oyerlock 10
378	The looks of a million-year-old polymer glass. Nature Materials, 2020, 19, 1041-1042.	13.3	0