
Paul A White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408404/publications.pdf Version: 2024-02-01

ΡΛΙΙΙ Δ \λ/μιτε

#	Article	IF	CITATIONS
1	The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology, 1991, 21, 99-118.	2.8	468
2	Sources, Fate, and Toxic Hazards of Oxygenated Polycyclic Aromatic Hydrocarbons (PAHs) at PAH- contaminated Sites. Ambio, 2007, 36, 475-485.	5.5	378
3	A Comparison of Mainstream and Sidestream Marijuana and Tobacco Cigarette Smoke Produced under Two Machine Smoking Conditions. Chemical Research in Toxicology, 2008, 21, 494-502.	3.3	378
4	Genotoxicity, cytotoxicity, and reactive oxygen species induced by singleâ€walled carbon nanotubes and C ₆₀ fullerenes in the FE1â€Mutaâ"¢Mouse lung epithelial cells. Environmental and Molecular Mutagenesis, 2008, 49, 476-487.	2.2	343
5	Mutagens in contaminated soil: a review. Mutation Research - Reviews in Mutation Research, 2004, 567, 227-345.	5.5	219
6	The mutagenic hazards of aquatic sediments: a review. Mutation Research - Reviews in Mutation Research, 2004, 567, 151-225.	5.5	208
7	The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 515, 85-98.	1.7	170
8	The genotoxic hazards of domestic wastes in surface waters1Summary of material presented at the workshop Sources, Effects and Potential Hazards of Genotoxic Complex Mixtures in the Environment held at the annual meeting of the Environmental Mutagen Society, April 20, 1997, Minneapolis, MN.1. Mutation Research - Reviews in Mutation Research, 1998, 410, 223-236.	5.5	163
9	The mutagenic hazards of settled house dust: a review. Mutation Research - Reviews in Mutation Research, 2004, 567, 401-425.	5.5	160
10	Quantitative Estimates of Soil Ingestion in Normal Children between the Ages of 2 and 7 Years: Population-based Estimates Using Aluminum, Silicon, and Titanium as Soil Tracer Elements. Archives of Environmental Health, 1990, 45, 112-122.	0.4	152
11	The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 783, 23-35.	1.7	139
12	Mutagenic and Carcinogenic Hazards of Settled House Dust I: Polycyclic Aromatic Hydrocarbon Content and Excess Lifetime Cancer Risk from Preschool Exposure. Environmental Science & Technology, 2008, 42, 1747-1753.	10.0	135
13	Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment. Environmental and Molecular Mutagenesis, 2014, 55, 609-623.	2.2	128
14	Increased mutant frequency by carbon black, but not quartz, in thelacZ andcII transgenes of mutaâ"¢mouse lung epithelial cells. Environmental and Molecular Mutagenesis, 2007, 48, 451-461.	2.2	125
15	IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 783, 66-78.	1.7	109
16	IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure–response relationships and points of departure (PoDs). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 783, 55-65.	1.7	101
17	Elevated Exposures to Polycyclic Aromatic Hydrocarbons and Other Organic Mutagens in Ottawa Firefighters Participating in Emergency, On-Shift Fire Suppression. Environmental Science & Technology, 2017, 51, 12745-12755.	10.0	80
18	Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 823, 28-44.	1.7	72

#	Article	IF	CITATIONS
19	The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification. Journal of the National Cancer Institute, 2020, 112, 30-37.	6.3	69
20	Empirical analysis of BMD metrics in genetic toxicology part I: <i>in vitro</i> analyses to provide robust potency rankings and support MOA determinations. Mutagenesis, 2016, 31, 255-263.	2.6	68
21	Mutation spectrum in FE1â€MUTA TM Mouse lung epithelial cells exposed to nanoparticulate carbon black. Environmental and Molecular Mutagenesis, 2011, 52, 331-337.	2.2	66
22	Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (<i>Pimephales) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10 4.3	Tf 50 622 Td
23	New and emerging technologies for genetic toxicity testing. Environmental and Molecular Mutagenesis, 2011, 52, 205-223.	2.2	62
24	Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbon Contaminated Soils Determined Using Bioassay-Derived Levels of Benzo[<i>a</i>]pyrene Equivalents. Environmental Science & Technology, 2015, 49, 1797-1805.	10.0	58
25	Development and characterization of a stable epithelial cell line from Muta?Mouse lung. Environmental and Molecular Mutagenesis, 2003, 42, 166-184.	2.2	56
26	Comparing the presence, potency, and potential hazard of genotoxins extracted from a broad range of industrial effluents. , 1996, 27, 116-139.		53
27	Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil. Environmental Toxicology and Chemistry, 2008, 27, 978-990.	4.3	52
28	Simultaneous measurement of benzo[a]pyreneâ€induced Pigâ€a and lacZ mutations, micronuclei and dna adducts in muta TM mouse. Environmental and Molecular Mutagenesis, 2011, 52, 756-765.	2.2	52
29	Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Mutaâ"¢Mouse transgenic rodent assay. Toxicology and Applied Pharmacology, 2016, 290, 31-42.	2.8	52
30	Polycyclic aromatic hydrocarbon (PAH) and metal contamination of air and surfaces exposed to combustion emissions during emergency fire suppression: Implications for firefighters' exposures. Science of the Total Environment, 2020, 698, 134211.	8.0	52
31	Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDermâ"¢). Particle and Fibre Toxicology, 2015, 13, 50.	6.2	51
32	Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology, 2013, 303, 83-93.	4.2	50
33	Correspondence between whole effluent toxicity and the presence of priority substances in complex industrial effluents. Environmental Toxicology and Chemistry, 2000, 19, 63-71.	4.3	49
34	Quantitative Interpretation of Genetic Toxicity Doseâ€Response Data for Risk Assessment and Regulatory Decisionâ€Making: Current Status and Emerging Priorities. Environmental and Molecular Mutagenesis, 2020, 61, 66-83.	2.2	49
35	Empirical analysis of BMD metrics in genetic toxicology part II: <i>in vivo</i> potency comparisons to promote reductions in the use of experimental animals for genetic toxicity assessment. Mutagenesis, 2016, 31, 265-275.	2.6	48
36	Hepatic mRNA, microRNA, and miRâ€34aâ€Target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. Environmental and Molecular Mutagenesis, 2012, 53, 10-21.	2.2	47

#	Article	IF	CITATIONS
37	Mutagenic characteristics of river waters flowing through large metropolitan areas in North America. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 534, 101-112.	1.7	46
38	Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis. Toxicological Sciences, 2012, 129, 213-224.	3.1	44
39	Mutation as a Toxicological Endpoint for Regulatory Decisionâ€Making. Environmental and Molecular Mutagenesis, 2020, 61, 34-41.	2.2	44
40	Mitochondrial DNA exhibits resistance to induced point and deletion mutations. Nucleic Acids Research, 2016, 44, 8513-8524.	14.5	43
41	Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 633, 95-111.	1.7	42
42	TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 773, 48-62.	1.0	39
43	The utility of metabolic activation mixtures containing human hepatic post-mitochondrial supernatant (S9) for <i>in vitro</i> genetic toxicity assessment. Mutagenesis, 2016, 31, 117-130.	2.6	37
44	Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in Mutaâ"¢Mouse and lung epithelial cells derived from Mutaâ"¢Mouse. Mutagenesis, 2008, 23, 483-490.	2.6	36
45	The Genotoxicity of Mainstream and Sidestream Marijuana and Tobacco Smoke Condensates. Chemical Research in Toxicology, 2009, 22, 1406-1414.	3.3	35
46	Plasma vitellogenin in male teleost fish from 43 rivers worldwide is correlated with upstream human population size. Environmental Pollution, 2010, 158, 3279-3284.	7.5	35
47	New approaches to advance the use of genetic toxicology analyses for human health risk assessment. Toxicology Research, 2015, 4, 667-676.	2.1	34
48	Detection of genotoxic substances in bivalve molluscs from the Saguenay Fjord (Canada), using the SOS chromotest. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1997, 392, 277-300.	1.7	33
49	Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk. Toxicology and Applied Pharmacology, 2013, 273, 269-280.	2.8	33
50	Characterizing Nanoparticles in Biological Matrices: Tipping Points in Agglomeration State and Cellular Delivery <i>In Vitro</i> . ACS Nano, 2017, 11, 11986-12000.	14.6	33
51	A global toxicogenomic analysis investigating the mechanistic differences between tobacco and marijuana smoke condensates in vitro. Toxicology, 2013, 308, 60-73.	4.2	32
52	Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene. Archives of Toxicology, 2018, 92, 967-982.	4.2	32
53	Genetic toxicology at the crossroads—from qualitative hazard evaluation to quantitative risk assessment. Mutagenesis, 2016, 31, 233-237.	2.6	31
54	A semi-automated, microplate version of the SOS Chromotest for the analysis of complex environmental extracts. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1996, 360, 51-74.	0.4	30

#	Article	IF	CITATIONS
55	Sorption of organic genotoxins to particulate matter in industrial effluents. , 1996, 27, 140-151.		30
56	SOS chromotest results in a broader context: Empirical relationships between genotoxic potency, mutagenic potency, and carcinogenic potency. , 1996, 27, 270-305.		30
57	GENOTOXIC SUBSTANCES IN THE ST. LAWRENCE SYSTEM. I: INDUSTRIAL GENOTOXINS SORBED TO PARTICULATE MATTER IN THE ST. LAWRENCE, ST. MAURICE, AND SAGUENAY RIVERS, CANADA. Environmental Toxicology and Chemistry, 1998, 17, 286.	4.3	30
58	Mutagenic and Carcinogenic Hazards of Settled House Dust II: Salmonella Mutagenicity. Environmental Science & Technology, 2008, 42, 1754-1760.	10.0	26
59	Soil ingestion rate determination in a rural population of Alberta, Canada practicing a wilderness lifestyle. Science of the Total Environment, 2014, 470-471, 138-146.	8.0	26
60	In Vitro Mammalian Mutagenicity of Complex Polycyclic Aromatic Hydrocarbon Mixtures in Contaminated Soils. Environmental Science & amp; Technology, 2015, 49, 1787-1796.	10.0	26
61	Comparing BMDâ€derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay. Environmental and Molecular Mutagenesis, 2017, 58, 632-643.	2.2	25
62	Global transcriptional characterization of a mouse pulmonary epithelial cell line for use in genetic toxicology. Toxicology in Vitro, 2009, 23, 816-833.	2.4	24
63	Mass balance soil ingestion estimating methods and their application to inhabitants of rural and wilderness areas: A critical review. Science of the Total Environment, 2010, 408, 2181-2188.	8.0	23
64	Genetic toxicology and toxicogenomic analysis of three cigarette smoke condensates in vitro reveals few differences among fullâ€flavor, blonde, and light products. Environmental and Molecular Mutagenesis, 2012, 53, 281-296.	2.2	22
65	Poly(ethylene imine) Nanocarriers Do Not Induce Mutations nor Oxidative DNA Damage in Vitro in MutaMouse FE1 Cells. Molecular Pharmaceutics, 2011, 8, 976-981.	4.6	21
66	Regulating temperature and relative humidity in air–liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures. Toxicology Research, 2017, 6, 448-459.	2.1	20
67	Mutagenicity of an aged gasworks soil during bioslurry treatment. Environmental and Molecular Mutagenesis, 2009, 50, 404-412.	2.2	19
68	Hepatic genotoxicity and toxicogenomic responses in Mutaâ,,¢Mouse males treated with dibenz[a,h]anthracene. Mutagenesis, 2013, 28, 543-554.	2.6	19
69	In vitro mammalian cell mutation assays based on transgenic reporters: A report of the International Workshop on Genotoxicity Testing (IWGT). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 847, 403039.	1.7	19
70	Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene. Environmental and Molecular Mutagenesis, 2020, 61, 94-113.	2.2	19
71	The influence of demographic and lifestyle factors on urinary levels of PAH metabolites—empirical analyses of Cycle 2 (2009–2011) CHMS data. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 386-397.	3.9	18
72	The development of adverse outcome pathways for mutagenic effects for the organization for economic coâ€operation and development. Environmental and Molecular Mutagenesis, 2013, 54, 79-81.	2.2	17

#	Article	IF	CITATIONS
73	A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons. Archives of Toxicology, 2017, 91, 2599-2616.	4.2	17
74	Tissueâ€specific metabolic activation and mutagenicity of 3â€nitrobenzanthrone in Mutaâ,"¢Mouse. Environmental and Molecular Mutagenesis, 2008, 49, 602-613.	2.2	15
75	Human urinary mutagenicity after wood smoke exposure during traditional temazcal use. Mutagenesis, 2014, 29, 367-377.	2.6	15
76	Transcriptional profiling of the mouse hippocampus supports an NMDARâ€mediated neurotoxic mode of action for benzo[<i>a</i>]pyrene. Environmental and Molecular Mutagenesis, 2016, 57, 350-363.	2.2	15
77	Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application. Archives of Toxicology, 2022, 96, 2067-2085.	4.2	15
78	Genotoxic substances in the St. Lawrence system I: Industrial genotoxins sorbed to particulate matter in the St. Lawrence, St. Maurice, and Saguenay rivers, Canada. Environmental Toxicology and Chemistry, 1998, 17, 286-303.	4.3	14
79	Transcriptional Profiling of Dibenzo[<i>def,p</i>]chrysene-induced Spleen Atrophy Provides Mechanistic Insights into its Immunotoxicity in MutaMouse. Toxicological Sciences, 2016, 149, 251-268.	3.1	14
80	Induction of <i>lacZ</i> mutations in Mutaâ,,¢Mouse primary hepatocytes. Environmental and Molecular Mutagenesis, 2010, 51, 330-337.	2.2	13
81	Cancer risk to First Nations' people from exposure to polycyclic aromatic hydrocarbons near in-situ bitumen extraction in Cold Lake, Alberta. Environmental Health, 2014, 13, 7.	4.0	13
82	GENOTOXIC SUBSTANCES IN THE ST. LAWRENCE SYSTEM. II: EXTRACTS OF FISH AND MACROINVERTEBRATES FROM THE ST. LAWRENCE AND SAGUENAY RIVERS, CANADA. Environmental Toxicology and Chemistry, 1998, 17, 304.	4.3	13
83	Genetic Toxicity of Complex Mixtures of Polycyclic Aromatic Hydrocarbons: Evaluating Dose-Additivity in a Transgenic Mouse Model. Environmental Science & Technology, 2017, 51, 8138-8148.	10.0	12
84	Performance of the <i>in vitro</i> transgene mutation assay in MutaMouse FE1 cells: Evaluation of nine misleading ("Falseâ€) positive chemicals. Environmental and Molecular Mutagenesis, 2017, 58, 582-591.	2.2	11
85	Quantitative relationships between <i>lacZ</i> mutant frequency and DNA adduct frequency in Mutaâ,,¢Mouse tissues and cultured cells exposed to 3-nitrobenzanthrone. Mutagenesis, 2017, 32, gew067.	2.6	11
86	The mutagenic activity of select azo compounds in MutaMouse target tissues in vivo and primary hepatocytes in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 844, 25-34.	1.7	11
87	Genotoxic substances in the St. Lawrence system II: Extracts of fish and macroinvertebrates from the St. Lawrence and Saguenay rivers, Canada. Environmental Toxicology and Chemistry, 1998, 17, 304-316.	4.3	10
88	Physicalâ€chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomassâ€fueled electrical production facility. Environmental and Molecular Mutagenesis, 2011, 52, 319-330.	2.2	10
89	MutAIT: an online genetic toxicology data portal and analysis tools. Mutagenesis, 2016, 31, 323-328.	2.6	10
90	HPLC Measurement of the DNA Oxidation Biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, in Cultured Cells and Animal Tissues. Journal of Visualized Experiments, 2015, , e52697.	0.3	9

2.4

6

#	Article	IF	CITATIONS
91	Assessment of 3-nitrobenzanthrone reductase activity in mammalian tissues by normal-phase HPLC with fluorescence detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 824, 229-237.	2.3	8
92	Oral exposure to commercially available coal tarâ€based pavement sealcoat induces murine genetic damage and mutations. Environmental and Molecular Mutagenesis, 2016, 57, 535-545.	2.2	8
93	The 28 + 28Âday design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals. Archives of Toxicology, 2021, 95, 1103-1116.	4.2	8
94	MUTATION LOAD IN NATURAL POPULATIONS OF THE SENSITIVE FERNONOCLEA SENSIBILISEXPOSED TO SOIL MUTAGENS. , 2002, 12, 124-137.		8
95	Proliferating primary hepatocytes from the pUR288 <i>lacZ</i> plasmid mouse are valuable tools for genotoxicity assessment in vitro. Environmental and Molecular Mutagenesis, 2012, 53, 376-383.	2.2	7
96	HERITABLE REPRODUCTIVE EFFECTS OF BENZO[a]PYRENE ON THE FATHEAD MINNOW (PIMEPHALES) TJ ETQq 0 (0.0.rgBT /0	Overlock 10
97	Genotoxicity of snow in the Montreal metropolitan area. Water, Air, and Soil Pollution, 1995, 83, 315-334.	2.4	6

99	Mutagenicity of smoke condensates from Canadian cigarettes with different design features. Mutagenesis, 2014, 29, 7-15.	2.6	6
100	A method to estimate sediment ingestion by fish. Aquatic Toxicology, 2011, 103, 121-127.	4.0	5

DNA Strand Length and EROD Activity in Relation to Two Screening Measures of Genotoxic Exposure in Great Lakes Herring Gulls. Ecotoxicology, 2005, 14, 527-544.

101	Mutagenicity of Carbon Nanomaterials. Journal of Biomedical Nanotechnology, 2011, 7, 29-29.	1.1	5
102	Evaluation of the <i>LacZ</i> reporter assay in cryopreserved primary hepatocytes for <i>In vitro</i> genotoxicity testing. Environmental and Molecular Mutagenesis, 2016, 57, 643-655.	2.2	5
103	The IWGT in vitro Mammalian Cell Gene Mutation (MCGM) assays working group—Introductory remarks & consensus statements. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 848, 403061.	1.7	5
104	The development and prevalidation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part II: Assay performance for the identification of mutagenic chemicals. Environmental and Molecular Mutagenesis, 2019, 60, 348-360.	2.2	5
105	A pilot study to assess the feasibility of using naturally-occurring radionuclides as mass balance tracers to estimate soil ingestion. Ecotoxicology and Environmental Safety, 2012, 83, 34-40.	6.0	4
106	<i>In vitro</i> mutagenicity of selected environmental carcinogens and their metabolites in MutaMouse FE1 lung epithelial cells. Mutagenesis, 2020, 35, 453-463.	2.6	4
107	The sources and potential hazards of mutagens in complex environmental matrices—Part II. Mutation Research - Reviews in Mutation Research, 2007, 636, 2-3.	5.5	3
108	RE: Recommendations, evaluation and validation of a semi-automated, fluorescent-based scoring protocol for micronucleus testing in human cells (Mutagenesis, 29, 155–164, 2014). Mutagenesis, 2015,	2.6	3

30, 311-312.

98

#	Article	IF	CITATIONS
109	The development and prevalidation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part I: Isolation, structural, genetic, and biochemical characterization. Environmental and Molecular Mutagenesis, 2019, 60, 331-347.	2.2	3
110	Integrated in silico and in vitro genotoxicity assessment of thirteen data-poor substances. Regulatory Toxicology and Pharmacology, 2019, 107, 104427.	2.7	1
111	A comparison of the lowest effective concentration in culture media for detection of chromosomal damage in vitro and in blood or plasma for detection of micronuclei in vivo. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 879-880, 503503.	1.7	1