Alison Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ruckerbactin Produced by <i>Yersinia ruckeri</i> YRB Is a Diastereomer of the Siderophore Trivanchrobactin Produced by <i>Vibrio campbellii</i> DS40M4. Journal of Natural Products, 2022, 85, 264-269.	3.0	2
2	On the origin of amphi-enterobactin fragments produced by Vibrio campbellii species. Journal of Biological Inorganic Chemistry, 2022, 27, 565-572.	2.6	2
3	Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe(<scp>iii</scp>) coordination. Chemical Science, 2021, 12, 12485-12493.	7.4	7
4	Photoactive siderophores: Structure, function and biology. Journal of Inorganic Biochemistry, 2021, 221, 111457.	3.5	12
5	Precursor-directed biosynthesis of catechol compounds in <i>Acinetobacter bouvetii</i> DSM 14964. Chemical Communications, 2020, 56, 12222-12225.	4.1	11
6	Inorganic Young Investigators: Celebrating the Rising Generation of Chemists. Inorganic Chemistry, 2020, 59, 11852-11854.	4.0	0
7	Impact of Molecular Architecture and Adsorption Density on Adhesion of Mussel-Inspired Surface Primers with Catechol-Cation Synergy. Journal of the American Chemical Society, 2019, 141, 18673-18681.	13.7	40
8	Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19805-19814.	7.1	31
9	A suite of asymmetric citrate siderophores isolated from a marine Shewanella species. Journal of Inorganic Biochemistry, 2019, 198, 110736.	3.5	8
10	Ambiguity of NRPS Structure Predictions: Four Bidentate Chelating Groups in the Siderophore Pacifibactin. Journal of Natural Products, 2019, 82, 990-997.	3.0	15
11	Catechol oxidation: considerations in the design of wet adhesive materials. Biomaterials Science, 2018, 6, 332-339.	5.4	72
12	Substrate-based differential expression analysis reveals control of biomass degrading enzymes in Pycnoporus cinnabarinus. Biochemical Engineering Journal, 2018, 130, 83-89.	3.6	12
13	β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. Journal of Biological Inorganic Chemistry, 2018, 23, 957-967.	2.6	19
14	Amphi-enterobactin commonly produced among Vibrio campbellii and Vibrio harveyi strains can be taken up by a novel outer membrane protein FapA that also can transport canonical Fe(III)-enterobactin. Journal of Biological Inorganic Chemistry, 2018, 23, 1009-1022.	2.6	7
15	Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds. Metallomics, 2017, 9, 824-839.	2.4	33
16	Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. Journal of Biological Inorganic Chemistry, 2017, 22, 739-749.	2.6	35
17	Peroxidative Oxidation of Lignin and a Lignin Model Compound by a Manganese SALEN Derivative. ACS Sustainable Chemistry and Engineering, 2016, 4, 3212-3219.	6.7	20
18	Defining the Catechol–Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces. Journal of the American Chemical Society, 2016, 138, 9013-9016.	13.7	157

#	Article	IF	CITATIONS
19	Microbial ligand coordination: Consideration of biological significance. Coordination Chemistry Reviews, 2016, 306, 628-635.	18.8	31
20	Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores. Journal of Inorganic Biochemistry, 2015, 148, 22-26.	3.5	11
21	Fatty Acid Hydrolysis of Acyl Marinobactin Siderophores by <i>Marinobacter</i> Acylases. Biochemistry, 2015, 54, 744-752.	2.5	14
22	Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. BioMetals, 2015, 28, 445-459.	4.1	22
23	Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015, 349, 628-632.	12.6	557
24	Amphiphilic siderophore production by oil-associating microbes. Metallomics, 2014, 6, 1150-1155.	2.4	35
25	Microbial Tailoring of Acyl Peptidic Siderophores. Biochemistry, 2014, 53, 2624-2631.	2.5	14
26	Biosynthesis of Amphi-enterobactin Siderophores by Vibrio harveyi BAA-1116: Identification of a Bifunctional Nonribosomal Peptide Synthetase Condensation Domain. Journal of the American Chemical Society, 2014, 136, 5615-5618.	13.7	45
27	Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. Journal of Biological Inorganic Chemistry, 2013, 18, 489-497.	2.6	21
28	Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte <i><scp>H</scp>erbaspirillum seropedicae</i> . Environmental Microbiology, 2013, 15, 916-927.	3.8	66
29	Isolation, Structure Elucidation, and Iron-Binding Properties of Lystabactins, Siderophores Isolated from a Marine <i>Pseudoalteromonas </i> sp <i>.</i> . Journal of Natural Products, 2013, 76, 648-654.	3.0	17
30	Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901. PLoS ONE, 2013, 8, e76151.	2.5	55
31	A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. Journal of Inorganic Biochemistry, 2012, 107, 90-95.	3.5	28
32	Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing. Chemical Communications, 2011, 47, 12086.	4.1	51
33	Chrysobactin Siderophores Produced by <i>Dickeya chrysanthemi</i> EC16. Journal of Natural Products, 2011, 74, 1207-1212.	3.0	36
34	Identification of new members within suites of amphiphilic marine siderophores. BioMetals, 2011, 24, 85-92.	4.1	34
35	Metallosurfactants of bioinorganic interest: Coordination-induced self assembly. Coordination Chemistry Reviews, 2011, 255, 678-687.	18.8	66
36	Metals, Acquisition by Marine Bacteria. Encyclopedia of Earth Sciences Series, 2011, , 565-568.	0.1	0

#	Article	IF	CITATIONS
37	Iron(III)–siderophore coordination chemistry: Reactivity of marine siderophores. Coordination Chemistry Reviews, 2010, 254, 288-296.	18.8	137
38	Vanchrobactin and Anguibactin Siderophores Produced by <i>Vibrio</i> sp. DS40M4. Journal of Natural Products, 2010, 73, 1038-1043.	3.0	45
39	Chemistry of Marine Ligands and Siderophores. Annual Review of Marine Science, 2009, 1, 43-63.	11.6	298
40	Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. BioMetals, 2009, 22, 565-571.	4.1	42
41	Mechanistic considerations of halogenating enzymes. Nature, 2009, 460, 848-854.	27.8	292
42	Ferric Stability Constants of Representative Marine Siderophores: Marinobactins, Aquachelins, and Petrobactin. Inorganic Chemistry, 2009, 48, 11466-11473.	4.0	38
43	Loihichelins Aâ^'F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5. Journal of Natural Products, 2009, 72, 884-888.	3.0	90
44	Microbial Iron Acquisition: Marine and Terrestrial Siderophores. Chemical Reviews, 2009, 109, 4580-4595.	47.7	407
45	XAS Study of a Metal-Induced Phase Transition by a Microbial Surfactant. Langmuir, 2008, 24, 4999-5002.	3.5	13
46	lodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6954-6958.	7.1	318
47	Metal-Dependent Self-Assembly of a Microbial Surfactant. Langmuir, 2007, 23, 9393-9400.	3.5	23
48	Marine amphiphilic siderophores: Marinobactin structure, uptake, and microbial partitioning. Journal of Inorganic Biochemistry, 2007, 101, 1692-1698.	3.5	54
49	Photoreactivity of Iron(III)â ^{~,} Aerobactin:Â Photoproduct Structure and Iron(III) Coordination. Inorganic Chemistry, 2006, 45, 6028-6033.	4.0	91
50	Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. Journal of Biological Inorganic Chemistry, 2006, 11, 633-641.	2.6	74
51	Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. Journal of Biological Inorganic Chemistry, 2006, 11, 663-669.	2.6	46
52	Structure of synechobactins, new siderophores of the marine cyanobacterium <i>Synechococcus</i> sp. PCC 7002. Limnology and Oceanography, 2005, 50, 1918-1923.	3.1	124
53	Siderophores and the Dissolution of Iron-Bearing Minerals in Marine Systems. Reviews in Mineralogy and Geochemistry, 2005, 59, 53-84.	4.8	74
54	Marine Siderophores and Microbial Iron Mobilization. BioMetals, 2005, 18, 369-374.	4.1	118

#	Article	IF	CITATIONS
55	4. Siderophores and the Dissolution of Iron-Bearing Minerals in Marine Systems. , 2005, , 53-84.		17
56	Micelle-to-Vesicle Transition of an Iron-Chelating Microbial Surfactant, Marinobactin E. Langmuir, 2005, 21, 12109-12114.	3.5	42
57	Iron(III) Coordination Chemistry of Alterobactin A:Â A Siderophore from the Marine BacteriumAlteromonas luteoviolacea. Inorganic Chemistry, 2005, 44, 7671-7677.	4.0	25
58	The marine biogeochemistry of iron. Metal Ions in Biological Systems, 2005, 44, 21-46.	0.4	3
59	The Role of Vanadium Bromoperoxidase in the Biosynthesis of Halogenated Marine Natural Products. ChemInform, 2004, 35, no.	0.0	2
60	Petrobactin Sulfonate, a New Siderophore Produced by the Marine BacteriumMarinobacterhydrocarbonoclasticus. Journal of Natural Products, 2004, 67, 1897-1899.	3.0	66
61	The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Natural Product Reports, 2004, 21, 180.	10.3	307
62	Vanadium Bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products. Journal of the American Chemical Society, 2004, 126, 15060-15066.	13.7	193
63	Total synthesis and structure revision of petrobactin. Tetrahedron, 2003, 59, 2007-2014.	1.9	68
64	Iron acquisition: straight up and on the rocks?. Nature Structural and Molecular Biology, 2003, 10, 240-241.	8.2	14
65	Vanadium Haloperoxidase-Catalyzed Bromination and Cyclization of Terpenes. Journal of the American Chemical Society, 2003, 125, 3688-3689.	13.7	144
66	Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3754-3759.	7.1	175
67	Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography, 2003, 48, 1069-1078.	3.1	217
68	Modeling the Catalytic Site of Vanadium Bromoperoxidase:Â Synthesis and Structural Characterization of Intramolecularly H-bonded Vanadium(V) Oxoperoxo Complexes, [VO(O2)(NH2pyg2)]K and [VO(O2)(BrNH2pyg2)]K. Inorganic Chemistry, 2002, 41, 161-163.	4.0	70
69	Petrobactin, a Photoreactive Siderophore Produced by the Oil-Degrading Marine Bacterium Marinobacter hydrocarbonoclasticus. Journal of the American Chemical Society, 2002, 124, 378-379.	13.7	187
70	A Chlorine Isotope Effect for Enzyme-Catalyzed Chlorination. Journal of the American Chemical Society, 2002, 124, 14526-14527.	13.7	54
71	Membrane Affinity of the Amphiphilic Marinobactin Siderophores. Journal of the American Chemical Society, 2002, 124, 13408-13415.	13.7	70
72	Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 1-8.	1.8	237

#	Article	IF	CITATIONS
73	Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis. Journal of Inorganic Biochemistry, 2002, 91, 59-69.	3.5	53
74	On the Regiospecificity of Vanadium Bromoperoxidase. Journal of the American Chemical Society, 2001, 123, 3289-3294.	13.7	104
75	Photochemical cycling of iron in the surface ocean mediated by microbial iron(iii)-binding ligands. Nature, 2001, 413, 409-413.	27.8	448
76	Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnology and Oceanography, 2001, 46, 420-424.	3.1	72
77	Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Marine Chemistry, 2000, 69, 1-17.	2.3	192
78	Self-Assembling Amphiphilic Siderophores from Marine Bacteria. Science, 2000, 287, 1245-1247.	12.6	308
79	Competition among marine phytoplankton for different chelated iron species. Nature, 1999, 400, 858-861.	27.8	429
80	Mechanistic considerations of the vanadium haloperoxidases. Coordination Chemistry Reviews, 1999, 187, 17-35.	18.8	245
81	Mesoporous Silicate Sequestration and Release of Proteins. Journal of the American Chemical Society, 1999, 121, 9897-9898.	13.7	369
82	Vanadium Haloperoxidases. , 1999, , 55-79.		3
83	Acquisition and Utilization of Transition Metal Ions by Marine Organisms. , 1998, 281, 207-209.		250
84	Vanadium haloperoxidases. Current Opinion in Chemical Biology, 1998, 2, 279-285.	6.1	122
85	Reactivity of Vanadium Bromoperoxidase. ACS Symposium Series, 1998, , 202-215.	0.5	3
86	Vanadium bromoperoxidase and functional mimics. Structure and Bonding, 1997, , 109-132.	1.0	55
87	Peroxidative Halogenation Catalyzed by Transition-Metal-Ion-Grafted Mesoporous Silicate Materials. Journal of the American Chemical Society, 1997, 119, 6921-6922.	13.7	105
88	Structure of putrebactin, a new dihydroxamate siderophore produced by Shewanella putrefaciens. Journal of Biological Inorganic Chemistry, 1997, 2, 93-97.	2.6	68
89	Inactivation of Vanadium Bromoperoxidase: Formation of 2-Oxohistidineâ€. Biochemistry, 1996, 35, 11805-11811.	2.5	34
90	Oxygen-17 NMR, Electronic, and Vibrational Spectroscopy of Transition Metal Peroxo Complexes:Â Correlation with Reactivity. Inorganic Chemistry, 1996, 35, 2378-2383.	4.0	79

#	Article	IF	CITATIONS
91	Modeling Vanadium Bromoperoxidase. Advances in Chemistry Series, 1996, , 329-349.	0.6	4
92	Vanadium bromoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide. Inorganica Chimica Acta, 1996, 243, 201-206.	2.4	31
93	Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 1995, 50, 179-188.	2.3	78
94	Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry, 1995, 34, 12689-12696.	2.5	68
95	On The Mechanism of cis-Dioxovanadium(V)-Catalyzed Oxidation of Bromide by Hydrogen Peroxide: Evidence for a Reactive, Binuclear Vanadium(V) Peroxo Complex. Journal of the American Chemical Society, 1995, 117, 3475-3484.	13.7	138
96	Vanadium Peroxide Complexes. Chemical Reviews, 1994, 94, 625-638.	47.7	564
97	Oxovanadium(V) Alkoxo-Chloro Complexes of the Hydridotripyrazolylborates as Models for the Binding Site in Bromoperoxidase. Inorganic Chemistry, 1994, 33, 646-655.	4.0	111
98	Molybdenum(VI)- and Tungsten(VI)-Mediated Biomimetic Chemistry of Vanadium Bromoperoxidase. Inorganic Chemistry, 1994, 33, 3269-3275.	4.0	72
99	Evidence for organic substrate binding to vanadium bromoperoxidase. Journal of the American Chemical Society, 1994, 116, 411-412.	13.7	65
100	A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature, 1993, 366, 455-458.	27.8	238
101	Marine haloperoxidases. Chemical Reviews, 1993, 93, 1937-1944.	47.7	627
102	Biomimics of vanadium bromoperoxidase: Vanadium(V)-Schiff base catalyzed oxidation of bromide by hydrogen peroxide. Inorganic Chemistry, 1993, 32, 4754-4761.	4.0	202
103	Aerobactin production by a planktonic marine Vibrio sp. Limnology and Oceanography, 1993, 38, 1091-1097.	3.1	111
104	Vanadium(V) complexes of 1,5,10-tris(2,3-dihydroxybenzoyl)-1,5,10-triazadecane and its analogs. Inorganic Chemistry, 1992, 31, 5072-5077.	4.0	15
105	A functional mimic of vanadium bromoperoxidase. Journal of the American Chemical Society, 1992, 114, 760-761.	13.7	105
106	Investigation of the mechanism of iron acquisition by the marine bacterium <i>Alteromonas luteoviolaceus</i> : Characterization of siderophore production. Limnology and Oceanography, 1991, 36, 1783-1792.	3.1	69
107	Coordination chemistry of vanadium in biological systems. Coordination Chemistry Reviews, 1991, 109, 61-105.	18.8	278
108	A new eicosapentaenoic acid formed from arachidonic acid in the coralline red algaeBossiella orbigniana. Lipids, 1991, 26, 162-165.	1.7	48

#	Article	IF	CITATIONS
109	Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum. BBA - Proteins and Proteomics, 1991, 1079, 1-7.	2.1	43
110	The novel non-heme vanadium bromoperoxidase from marine algae: Phosphate inactivation. Journal of Industrial Microbiology, 1991, 8, 37-43.	0.9	11
111	STUDIES OF VANDADIUM-BROMOPEROXIDASE USING SURFACE AND CORTICAL PROTOPLASTS OF MACROCYSTIS PYRIEFERA (PHAEOPHYTA)1. Journal of Phycology, 1990, 26, 589-592.	2.3	16
112	Chlorination catalyzed by vanadium bromoperoxidase. Inorganic Chemistry, 1990, 29, 5015-5017.	4.0	63
113	Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines. Biochemistry, 1990, 29, 7974-7981.	2.5	69
114	The Coordination and Redox Chemistry of Vanadium in Aqueous Solution. , 1990, , 25-49.		12
115	Reactivation of vanadate-inhibited enzymes with desferrioxamine B, a vanadium(V) chelator. Inorganica Chimica Acta, 1989, 163, 1-3.	2.4	17
116	Vanadium-51 NMR as a probe of vanadium(V) coorination to human apotransferrin. Journal of the American Chemical Society, 1989, 111, 2802-2809.	13.7	94
117	Bromide-assisted hydrogen peroxide disproportionation catalyzed by vanadium bromoperoxidase: absence of direct catalase activity and implications for the catalytic mechanism. Inorganic Chemistry, 1989, 28, 393-395.	4.0	64
118	Differential scanning calorimetry of copper-zinc-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry, 1988, 27, 950-958.	2.5	119
119	Vanadium-51 NMR as a probe of metal-ion binding in metalloproteins. Journal of the American Chemical Society, 1987, 109, 1864-1865.	13.7	51
120	Flash photolysis of Fe(TIM)CO(X)2+ complexes. Inorganic Chemistry, 1984, 23, 4545-4549.	4.0	7
121	Equilibrium and kinetic studies of substitution reactions of Fe(TIM)XY2+ in aqueous solution. Inorganic Chemistry, 1984, 23, 2227-2231.	4.0	12