Thomas A Reh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082874/publications.pdf

Version: 2024-02-01

112 papers 11,300 citations

54 h-index 95 g-index

115 all docs

115 docs citations

115 times ranked 6112 citing authors

#	Article	IF	CITATIONS
1	Comparative Biology of Vertebrate Retinal Regeneration: Restoration of Vision through Cellular Reprogramming. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040816.	5 . 5	20
2	Single-cell ATAC-seq of fetal human retina and stem-cell-derived retinal organoids shows changing chromatin landscapes during cell fate acquisition. Cell Reports, 2022, 38, 110294.	6.4	43
3	<scp>NFkB</scp> â€signaling promotes glial reactivity and suppresses Mýller gliaâ€mediated neuron regeneration in the mammalian retina. Glia, 2022, 70, 1380-1401.	4.9	28
4	Microglial depletion abolishes ischemic preconditioning in white matter. Glia, 2022, 70, 661-674.	4.9	8
5	Human retinal model systems: Strengths, weaknesses, and future directions. Developmental Biology, 2021, 480, 114-122.	2.0	15
6	Efficient stimulation of retinal regeneration from MÃ $\frac{1}{4}$ ller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Reports, 2021, 37, 109857.	6.4	79
7	Epigenetics in neuronal regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 63-73.	5.0	29
8	Microglia Suppress Ascl1-Induced Retinal Regeneration in Mice. Cell Reports, 2020, 33, 108507.	6.4	66
9	Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures. Cell Reports, 2020, 30, 1644-1659.e4.	6.4	188
10	A Comparative Analysis of Reactive Müller Glia Gene Expression After Light Damage and microRNA-Depleted Müller Glia—Focus on microRNAs. Frontiers in Cell and Developmental Biology, 2020, 8, 620459.	3.7	16
11	Diseases and Repair Approaches in Vision. , 2020, , 54-65.		O
12	MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of MÃ $^1\!\!$ /4ller glia in mice. Development (Cambridge), 2019, 146, .	2.5	33
13	Genesis and Migration. , 2019, , 55-84.		O
14	$M\tilde{A}\frac{1}{4}$ ller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nature Communications, 2017, 8, 1603.	12.8	42
15	Small molecule Photoregulin3 prevents retinal degeneration in the RhoP23H mouse model of retinitis pigmentosa. ELife, 2017, 6, .	6.0	19
16	Stimulation of functional neuronal regeneration from MÃ $\frac{1}{4}$ ller glia in adult mice. Nature, 2017, 548, 103-107.	27.8	423
17	Potential of Small Molecule–Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa. , 2016, 57, 6407.		18
18	Retinal regeneration in birds and mice. Current Opinion in Genetics and Development, 2016, 40, 57-64.	3.3	72

#	Article	IF	CITATIONS
19	The microRNA expression profile of mouse Müller glia in vivo and in vitro. Scientific Reports, 2016, 6, 35423.	3.3	49
20	DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements. Epigenetics and Chromatin, 2015, 8, 8.	3.9	60
21	The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2674-2685.	3.2	15
22	Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Developmental Biology, 2015, 403, 128-138.	2.0	54
23	Transgenic expression of the proneural transcription factor Ascl1 in MÃ $\frac{1}{4}$ ller glia stimulates retinal regeneration in young mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13717-13722.	7.1	220
24	Photoreceptor cell fate specification in vertebrates. Development (Cambridge), 2015, 142, 3263-3273.	2.5	122
25	The past, present, and future of retinal regeneration. Experimental Eye Research, 2014, 123, 105-106.	2.6	24
26	EGF stimulates müller glial proliferation via a BMPâ€dependent mechanism. Glia, 2013, 61, 778-789.	4.9	61
27	The Development of the Retina. , 2013, , 330-341.		1
28	ASCL1 reprograms mouse MÃ $\frac{1}{4}$ ller glia into neurogenic retinal progenitors. Development (Cambridge), 2013, 140, 2619-2631.	2.5	209
29	Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2362-70.	7.1	187
30	Regenerative Medicine for the Special Senses: Restoring the Inputs. Journal of Neuroscience, 2012, 32, 14053-14057.	3.6	10
31	Neural induction., 2012,, 1-22.		0
32	Polarity and segmentation., 2012,, 23-48.		0
33	Genesis and migration. , 2012, , 49-75.		1
34	P53 is required for the developmental restriction in MÃ $^1\!\!/\!\!$ ller glial proliferation in mouse retina. Glia, 2012, 60, 1579-1589.	4.9	50
35	Studying the Generation of Regenerated Retinal Neuron from Mýller Glia in the Mouse Eye. Methods in Molecular Biology, 2012, 884, 213-227.	0.9	25
36	Production and Transplantation of Retinal Cells from Human and Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2012, 884, 229-246.	0.9	31

#	Article	IF	CITATIONS
37	Activation of BMP-Smad1/5/8 Signaling Promotes Survival of Retinal Ganglion Cells after Damage In Vivo. PLoS ONE, 2012, 7, e38690.	2.5	42
38	Adult Donor Rod Photoreceptors Integrate into the Mature Mouse Retina. , 2011, 52, 5266.		88
39	Regulated Reprogramming in the Regeneration of Sensory Receptor Cells. Neuron, 2011, 71, 389-405.	8.1	93
40	Genome-Wide Analysis of MÃ $\frac{1}{4}$ ller Glial Differentiation Reveals a Requirement for Notch Signaling in Postmitotic Cells to Maintain the Glial Fate. PLoS ONE, 2011, 6, e22817.	2.5	124
41	Microarray Characterization of Human Embryonic Stem Cell–Derived Retinal Cultures. , 2011, 52, 4897.		49
42	Dicer is required for the maintenance of notch signaling and gliogenic competence during mouse retinal development. Developmental Neurobiology, 2011, 71, 1153-1169.	3.0	34
43	Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development (Cambridge), 2011, 138, 3519-3531.	2.5	121
44	Regenerative Medicine for Diseases of the Retina., 2011,, 427-449.		2
45	Generation, Purification and Transplantation of Photoreceptors Derived from Human Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e8763.	2.5	378
46	Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development (Cambridge), 2010, 137, 619-629.	2.5	132
47	Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15792-15797.	7.1	170
48	Dicer Is Required for the Transition from Early to Late Progenitor State in the Developing Mouse Retina. Journal of Neuroscience, 2010, 30, 4048-4061.	3.6	132
49	Directing Human Embryonic Stem Cells to a Retinal Fate. Methods in Molecular Biology, 2010, 636, 139-153.	0.9	35
50	Acheateâ€scute like 1 (Ascl1) is required for normal deltaâ€like (Dll) gene expression and notch signaling during retinal development. Developmental Dynamics, 2009, 238, 2163-2178.	1.8	82
51	Acheate-scute like 1 (Ascl1) is required for normal delta-like (Dll) gene expression and notch signaling during retinal development. Developmental Dynamics, 2009, 238, spcone-spcone.	1.8	0
52	Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 321-340.	1.8	59
53	Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice. Cell Stem Cell, 2009, 4, 73-79.	11.1	585
54	Strategies for retinal repair: cell replacement and regeneration. Progress in Brain Research, 2009, 175, 23-31.	1.4	75

#	Article	IF	Citations
55	Relationship between deltaâ€like and proneural bHLH genes during chick retinal development. Developmental Dynamics, 2008, 237, 1565-1580.	1.8	40
56	Relationship between deltaâ€like and proneural bHLH genes during chick retinal development. Developmental Dynamics, 2008, 237, spcone.	1.8	0
57	Baf60c is a component of the neural progenitorâ€specific BAF complex in developing retina. Developmental Dynamics, 2008, 237, 3016-3023.	1.8	38
58	Activin signaling limits the competence for retinal regeneration from the pigmented epithelium. Mechanisms of Development, 2008, 125, 106-116.	1.7	55
59	Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Developmental Biology, 2008, 316, 87-99.	2.0	94
60	Neural Regeneration and Cell Replacement: A View from the Eye. Cell Stem Cell, 2008, 2, 538-549.	11.1	155
61	Stimulation of neural regeneration in the mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19508-19513.	7.1	347
62	NeuroD1 Regulates Expression of Thyroid Hormone Receptor \hat{l}^22 and Cone Opsins in the Developing Mouse Retina. Journal of Neuroscience, 2008, 28, 749-756.	3.6	65
63	Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Developmental Biology, 2007, 304, 479-498.	2.0	153
64	Notch signaling regulates regeneration in the avian retina. Developmental Biology, 2007, 312, 300-311.	2.0	128
65	Retinal Stem Cells. Methods in Enzymology, 2006, 419, 52-73.	1.0	60
66	The Development of the Retina., 2006,, 3-21.		1
67	Right timing for retina repair. Nature, 2006, 444, 156-157.	27.8	26
68	Pea3 expression is regulated by FGF signaling in developing retina. Developmental Dynamics, 2006, 235, 327-335.	1.8	25
69	Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia, 2006, 54, 94-104.	4.9	106
70	Notch Activity Is Downregulated Just prior to Retinal Ganglion Cell Differentiation. Developmental Neuroscience, 2006, 28, 128-141.	2.0	80
71	Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12769-12774.	7.1	656
72	Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6218-6223.	7.1	232

#	Article	IF	CITATIONS
73	Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. Developmental Brain Research, 2005, 155, 49-59.	1.7	38
74	Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks. Developmental Dynamics, 2005, 233, 66-75.	1.8	60
75	Retinoid X Receptor \hat{I}^3 Is Necessary to Establish the S-opsin Gradient in Cone Photoreceptors of the Developing Mouse Retina. , 2005, 46, 2897.		181
76	Retinal neurons regulate proliferation of postnatal progenitors and Mul´ller glia in the rat retina via TGFÎ2 signaling. Development (Cambridge), 2005, 132, 3015-3026.	2.5	113
77	Retinal stem cells and regeneration. International Journal of Developmental Biology, 2004, 48, 1003-1014.	0.6	146
78	Persistent Progenitors at the Retinal Margin of ptc+/- Mice. Journal of Neuroscience, 2004, 24, 229-237.	3.6	138
79	Identification of ciliary epithelial-specific genes using subtractive libraries and cDNA arrays in the avian eye. Developmental Dynamics, 2004, 229, 529-540.	1.8	32
80	BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of MÃ $^1\!\!/\!4$ ller glia in the retina. Molecular and Cellular Neurosciences, 2004, 27, 531-542.	2.2	74
81	Potential of Mýller glia to become neurogenic retinal progenitor cells. Glia, 2003, 43, 70-76.	4.9	224
82	Growth factors induce neurogenesis in the ciliary body. Developmental Biology, 2003, 259, 225-240.	2.0	104
83	Exogenous Growth Factors Stimulate the Regeneration of Ganglion Cells in the Chicken Retina. Developmental Biology, 2002, 251, 367-379.	2.0	112
84	Homologies Between Vertebrate and Invertebrate Eyes. Results and Problems in Cell Differentiation, 2002, 37, 219-255.	0.7	18
85	Insulin and Fibroblast Growth Factor 2 Activate a Neurogenic Program in M \tilde{A}^{1} /4ller Glia of the Chicken Retina. Journal of Neuroscience, 2002, 22, 9387-9398.	3.6	204
86	Neurodevelopmental control by thyroid hormone receptors. Current Opinion in Neurobiology, 2002, 12, 49-56.	4.2	125
87	Neural stem cells: form and function. Nature Neuroscience, 2002, 5, 392-394.	14.8	57
88	Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development (Cambridge), 2002, 129, 2283-2291.	2.5	108
89	Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development (Cambridge), 2002, 129, 2283-91.	2.5	51
90	FGFR3 Expression during Development and Regeneration of the Chick Inner Ear Sensory Epithelia. Developmental Biology, 2001, 238, 247-259.	2.0	57

#	Article	IF	CITATIONS
91	A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature Genetics, 2001, 27, 94-98.	21.4	485
92	$M\tilde{A}\frac{1}{4}$ ller glia are a potential source of neural regeneration in the postnatal chicken retina. Nature Neuroscience, 2001, 4, 247-252.	14.8	527
93	Transdifferentiation of Pigmented Epithelial Cells: A Source of Retinal Stem Cells?. Developmental Neuroscience, 2001, 23, 268-276.	2.0	63
94	p27Kip1 Regulates Cell Cycle Withdrawal of Late Multipotent Progenitor Cells in the Mammalian Retina. Developmental Biology, 2000, 219, 299-314.	2.0	152
95	Identification of a Proliferating Marginal Zone of Retinal Progenitors in Postnatal Chickens. Developmental Biology, 2000, 220, 197-210.	2.0	299
96	Molecular Control of Cell Diversification in the Vertebrate Retina. Results and Problems in Cell Differentiation, 2000, 31, 69-91.	0.7	14
97	A diffusible factor from normal retinal cells promotes rod photoreceptor survival in anin vitro model of retinitis pigmentosa. Journal of Neurobiology, 1999, 39, 475-490.	3.6	30
98	Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo. NeuroReport, 1999, 10, 2389-2394.	1,2	52
99	The nuclear receptor transcription factor, retinoid-related orphan receptor \hat{l}^2 , regulates retinal progenitor proliferation. Mechanisms of Development, 1998, 77, 149-164.	1.7	45
100	Sonic Hedgehog Promotes Rod Photoreceptor Differentiation in Mammalian Retinal Cells <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 6277-6288.	3.6	187
101	Temporal and spatial pattern of MASH-1 expression in the developing rat retina demonstrates progenitor cell heterogeneity. Journal of Comparative Neurology, 1996, 369, 319-327.	1.6	80
102	Transforming growth factorâ€Î²â€3 is mitogenic for rat retinal progenitor cells <i>in vitro</i> . Journal of Neurobiology, 1995, 28, 133-145.	3.6	62
103	Transdifferentiation and retinal regeneration. Seminars in Cell Biology, 1995, 6, 137-142.	3.4	38
104	Hair-cell regeneration in organ cultures of the postnatal chicken inner ear. Hearing Research, 1993, 70, 85-108.	2.0	69
105	Cellular interactions determine neuronal phenotypes in rodent retinal cultures. Journal of Neurobiology, 1992, 23, 1067-1083.	3.6	137
106	Generation of Neuronal Diversity in the Vertebrate Retina. , 1992, , 433-467.		22
107	EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron, 1991, 6, 923-936.	8.1	273
108	Characterization of germinal neuroepithelial cells in normal and regenerating retina. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1989, 10, S151-S161.	0.0	10

#	Article	IF	CITATIONS
109	The Regulation of Neuronal Production during Retinal Neurogenesis. , 1989, , 43-67.		11
110	Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Developmental Biology, 1986, 114, 463-469.	2.0	176
111	Qualitative and quantitative measures of plasticity during the normal development of the Rana pipiens retinotectal projection. Developmental Brain Research, 1983, 10, 187-200.	1.7	46
112	Regeneration: transdifferentiation and stem cells. , 0, , 307-324.		0