Peter H Molnar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082784/publications.pdf

Version: 2024-02-01

118 papers 27,182 citations

64 h-index 20900 115 g-index

118 all docs

118 docs citations

118 times ranked 11081 citing authors

#	Article	IF	CITATIONS
1	Initiation of Clockwise Rotation and Eastward Transport of Southeastern Tibet Inferred from Deflected Fault Traces and GPS Observations. Bulletin of the Geological Society of America, 2022, 134, 1129-1142.	1.6	30
2	Warmer Pliocene Upwelling Site SST Leads to Wetter Subtropical Coastal Areas: A Positive Feedback on SST. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	6
3	Differences between soil and air temperatures: Implications for geological reconstructions of past climate. , 2022, 18, 800-824.		6
4	Strain and Velocity Across the Great Basin Derived From 15â€ka Fault Slip Rates: Implications for Continuous Deformation and Seismic Hazard in the Walker Lane, Californiaâ€Nevada, USA. Tectonics, 2021, 40, e2020TC006389.	1.3	8
5	Constraints on the paleoelevation history of the Eastern Cordillera of Colombia from its palynological record., 2021, 17, 1333-1352.		4
6	Wetter Subtropics Lead to Reduced Pliocene Coastal Upwelling. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004243.	1.3	7
7	Multiproxy Reducedâ€Dimension Reconstruction of Pliocene Equatorial Pacific Sea Surface Temperatures. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003685.	1.3	9
8	Soil and Air Temperature Calibrations Using Branched GDGTs for the Tropical Andes of Colombia: Toward a Panâ€Tropical Calibration. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008941.	1.0	17
9	The Brittleâ€Plastic Transition, Earthquakes, Temperatures, and Strain Rates. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019335.	1.4	23
10	Lower Mantle Dynamics Perceived With 50 Years of Hindsight From Plate Tectonics. Geochemistry, Geophysics, Geosystems, 2019, 20, 5619-5649.	1.0	4
11	Seismic Moments of Intermediateâ€Depth Earthquakes Beneath the Hindu Kush: Active Stretching of a Blob of Sinking Thickened Mantle Lithosphere?. Tectonics, 2019, 38, 1651-1665.	1.3	18
12	Widespread and Persistent Deposition of Iron Formations for Two Billion Years. Geophysical Research Letters, 2019, 46, 3327-3339.	1.5	18
13	Little Geodetic Evidence for Localized Indian Subduction in the Pamirâ€Hindu Kush of Central Asia. Geophysical Research Letters, 2019, 46, 109-118.	1.5	26
14	Gravitational Potential Energy per Unit Area as a Constraint on Archean Sea Level. Geochemistry, Geophysics, Geosystems, 2018, 19, 4063-4095.	1.0	3
15	Reconstruction of Indian summer monsoon winds and precipitation over the past 10,000 years using equatorial pacific SST proxy records. Paleoceanography, 2017, 32, 195-216.	3.0	17
16	Comment (2) on "Formation of the Isthmus of Panama―by O'Dea <i>et al</i> Science Advances, 2017, e1602320.	3 4.7	34
17	Sea Surface Temperatures in the Eastern Equatorial Pacific and Surface Temperatures in the Eastern Cordillera of Colombia During El Niño: Implications for Pliocene Conditions. Paleoceanography, 2017, 32, 1309-1314.	3.0	9
18	Quaternary glaciation and the Great American Biotic Interchange. Geology, 2016, 44, 375-378.	2.0	57

#	Article	IF	Citations
19	GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 2016, 43, 8407-8416.	1.5	33
20	Reducedâ€dimension reconstruction of the equatorial Pacific SST and zonal wind fields over the past 10,000Âyears using Mg/Ca and alkenone records. Paleoceanography, 2016, 31, 928-952.	3.0	21
21	A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50ÂMa. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5453-5470.	1.2	45
22	Gravitational instability of mantle lithosphere and core complexes. Tectonics, 2015, 34, 478-487.	1.3	15
23	Rheology of the lithosphere beneath the central and western Tien Shan. Journal of Geophysical Research: Solid Earth, 2015, 120, 3803-3823.	1.4	29
24	Subseasonal variations in spatial signatures of ENSO on the Indian summer monsoon from 1901 to 2009. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8165-8185.	1.2	31
25	Mantle dynamics, isostasy, and the support of high terrain. Journal of Geophysical Research: Solid Earth, 2015, 120, 1932-1957.	1.4	105
26	Presentâ€day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements. Geophysical Research Letters, 2015, 42, 5227-5235.	1.5	68
27	An assessment of the mean annual precipitation needed to sustain Lake Sambhar in Rajasthan, India, during mid-Holocene time. Holocene, 2015, 25, 1923-1934.	0.9	4
28	Growth of the Maritime Continent and its possible contribution to recurring Ice Ages. Paleoceanography, 2015, 30, 196-225.	3.0	58
29	Effects of a lowâ€viscosity lower crust on topography and gravity at convergent mountain belts during gravitational instability of mantle lithosphere. Journal of Geophysical Research: Solid Earth, 2015, 120, 537-551.	1.4	6
30	Island precipitation enhancement and the diurnal cycle in radiativeâ€convective equilibrium. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1017-1034.	1.0	55
31	<i>Pn</i> anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere. Journal of Geophysical Research: Solid Earth, 2014, 119, 7745-7767.	1.4	16
32	A mechanism for freshening the Caribbean Sea in preâ€kce Age time. Paleoceanography, 2014, 29, 508-517.	3.0	8
33	Upper mantle seismic anisotropy at a strike-slip boundary: South Island, New Zealand. Journal of Geophysical Research: Solid Earth, 2014, 119, 1020-1040.	1.4	25
34	The growth of northeastern Tibet and its relevance to largeâ€scale continental geodynamics: A review of recent studies. Tectonics, 2013, 32, 1358-1370.	1.3	350
35	Rayleighâ€Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies. Journal of Geophysical Research: Solid Earth, 2013, 118, 2544-2557.	1.4	23
36	Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1170-1178.	1.2	63

3

#	Article	IF	Citations
37	Kinematics of the Pamir and Hindu Kush regions from GPS geodesy. Journal of Geophysical Research: Solid Earth, 2013, 118, 2408-2416.	1.4	109
38	Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since $\hat{a}^1/410$ Ma. Geophysical Research Letters, 2012, 39, .	1.5	39
39	Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the northâ€eastern Tibetan Plateau. Basin Research, 2012, 24, 31-50.	1.3	98
40	Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 2010, 38, 77-102.	4.6	644
41	Partitioning of Indiaâ€Eurasia convergence in the Pamirâ€Hindu Kush from GPS measurements. Geophysical Research Letters, 2010, 37, .	1.5	110
42	Lithospheric thinning and localization of deformation during Rayleighâ€√aylor instability with nonlinear rheology and implications for intracontinental magmatism. Journal of Geophysical Research, 2010, 115, .	3.3	15
43	Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 2010, 48, .	9.0	215
44	Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth and Planetary Science Letters, 2010, 295, 219-230.	1.8	217
45	GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 2010, 29, n/a-n/a.	1.3	306
46	Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Ni $ ilde{A}$ ±0. Paleoceanography, 2009, 24, .	3.0	48
47	Localization of shear along a lithospheric strength discontinuity: Application of a continuous deformation model to the boundary between Tibet and the Tarim Basin. Tectonics, 2009, 28, .	1.3	47
48	Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 2009 , 28 , .	1.3	514
49	Farâ€field lithospheric deformation in Tibet during continental collision. Tectonics, 2009, 28, .	1.3	110
50	Rayleigh‶aylor instability under a shear stress free top boundary condition and its relevance to removal of mantle lithosphere from beneath the Sierra Nevada. Tectonics, 2008, 27, .	1.3	11
51	Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography, 2008, 23,	3.0	132
52	Late Quaternary and presentâ€day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 2007, 26, .	1.3	215
53	Early Pliocene (pre–Ice Age) El Niño–like global climate: Which El Niño?. , 2007, 3, 337.		56
54	Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation. Journal of Geophysical Research, 2007, 112, .	3.3	36

#	Article	IF	Citations
55	Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. Journal of Fluid Mechanics, 2007, 572, 433-469.	1.4	35
56	Tropical cooling and the onset of North American glaciation. Climate of the Past, 2007, 3, 549-557.	1.3	39
57	Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere. Earth and Planetary Science Letters, 2006, 241, 543-556.	1.8	336
58	Late Quaternary to decadal velocity fields in Asia. Journal of Geophysical Research, 2005, 110, .	3.3	166
59	Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 2004, 305, 233-236.	6.0	278
60	GPS measurements from the Ladakh Himalaya, India: Preliminary tests of plate-like or continuous deformation in Tibet. Bulletin of the Geological Society of America, 2004, 116, 1385-1391.	1.6	147
61	The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophysical Journal International, 2004, 158, 1134-1150.	1.0	67
62	LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?. Annual Review of Earth and Planetary Sciences, 2004, 32, 67-89.	4.6	349
63	Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32, 809.	2.0	1,289
64	El Ni $\tilde{A}\pm o$'s tropical climate and teleconnections as a blueprint for pre-lce Age climates. Paleoceanography, 2002, 17, 11-1-11.	3.0	133
65	Pn anisotropy and distributed upper mantle deformation associated with a continental transform fault. Geophysical Research Letters, 2002, 29, 16-1-16-4.	1.5	87
66	A constraint on the shear stress at the Pacific-Australian plate boundary from heat flow and seismicity at the Kermadec forearc. Journal of Geophysical Research, 2001, 106, 6817-6833.	3.3	63
67	Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410, 891-897.	13.7	746
68	Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 2001, 411, 157-162.	13.7	466
69	EARTHQUAKES: Himalayan Seismic Hazard. Science, 2001, 293, 1442-1444.	6.0	549
70	TeleseismicPwave delays and modes of shortening the mantle lithosphere beneath South Island, New Zealand. Journal of Geophysical Research, 2000, 105, 21615-21631.	3.3	89
71	Continuous Deformation Versus Faulting Through the Continental Lithosphere of New Zealand. Science, 1999, 286, 516-519.	6.0	131
72	Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophysical Journal International, 1998, 133, 568-584.	1.0	131

#	Article	IF	Citations
73	Active Deformation of Asia: From Kinematics to Dynamics. Science, 1997, 278, 647-650.	6.0	429
74	The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophysical Journal International, 1997, 129, 95-112.	1.0	160
75	The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophysical Journal International, 1997, 130, 551-582.	1.0	223
76	Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International, 1997, 128, 125-150.	1.0	355
77	A bound on the rheology of continental lithosphere using very long baseline interferometry: The velocity of south China with respect to Eurasia. Journal of Geophysical Research, 1996, 101, 545-553.	3.3	44
78	Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 1996, 384, 450-453.	13.7	442
79	Lateral heterogeneity in the upper mantle and SS - S traveltime intervals for SS rays reflected from the Tibetan Plateau and its surroundings. Earth and Planetary Science Letters, 1995, 135, 139-148.	1.8	21
80	Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 1993, 31, 357.	9.0	1,633
81	Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir. Special Paper of the Geological Society of America, 1993, , 1-76.	0.5	245
82	Detachment of part of the downgoing slab and uplift of the New Hebrides (Vanuatu) Islands. Geophysical Research Letters, 1992, 19, 1507-1510.	1.5	54
83	Pâ€wave residuals at stations in nepal: Evidence for a high velocity region beneath the Karakorum. Geophysical Research Letters, 1991, 18, 1909-1912.	1.5	22
84	Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18, 1173.	2.0	701
85	Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan. Earth and Planetary Science Letters, 1990, 96, 367-383.	1.8	102
86	S-wave residuals from earthquakes in the Tibetan region and lateral variations in the upper mantle. Earth and Planetary Science Letters, 1990, 101, 68-77.	1.8	67
87	Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and the Northern Indoburman Ranges. Journal of Geophysical Research, 1990, 95, 12527-12552.	3.3	205
88	Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International, 1989, 99, 123-154.	1.0	493
89	The Cenozoic and Late Cretaceous evolution of the Indian Ocean Basin: uncertainties in the reconstructed positions of the Indian, African and Antarctic plates. Basin Research, 1988, 1, 23-40.	1.3	62
90	Some simple physical aspects of the support, structure, and evolution of mountain belts. Special Paper of the Geological Society of America, 1988, , 179-208.	0.5	351

#	Article	IF	Citations
91	Source parameters for 11 earthquakes in the Tien Shan, central Asia, determined by P and SH waveform inversion. Journal of Geophysical Research, 1987, 92, 12629-12648.	3.3	131
92	Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 1986, 323, 501-507.	13.7	247
93	Gravity anomalies, flexure of the Indian Plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics, 1985, 4, 513-538.	1.3	358
94	Active faulting and tectonics of Burma and surrounding regions. Journal of Geophysical Research, 1984, 89, 453-472.	3.3	274
95	Sâ€P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya. Journal of Geophysical Research, 1984, 89, 6911-6917.	3.3	52
96	Focal depths and fault plane solutions of earthquakes and active tectonics of the Himalaya. Journal of Geophysical Research, 1984, 89, 6918-6928.	3.3	171
97	Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. Journal of Geophysical Research, 1984, 89, 6203-6227.	3.3	426
98	Focal depths and fault plane solutions of earthquakes under the Tibetan Plateau. Journal of Geophysical Research, 1983, 88, 1180-1196.	3.3	274
99	Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research, 1983, 88, 4183-4214.	3.3	928
100	Average regional strain due to slip on numerous faults of different orientations. Journal of Geophysical Research, 1983, 88, 6430-6432.	3.3	113
101	Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. Journal of Geophysical Research, 1983, 88, 8171-8191.	3.3	334
102	Parallel thrust and normal faulting in Peru and constraints on the state of stress. Earth and Planetary Science Letters, 1981, 55, 473-481.	1.8	253
103	A possible dependence of tectonic strength on the age of the crust in Asia. Earth and Planetary Science Letters, 1981, 52, 107-114.	1.8	145
104	An intermediate depth earthquake beneath Tibet: Source characteristics of the event of September 14, 1976. Journal of Geophysical Research, 1981, 86, 2863-2876.	3.3	50
105	Constraints on the seismic wave velocity structure beneath the Tibetan Plateau and their tectonic implications. Journal of Geophysical Research, 1981, 86, 5937-5962.	3.3	136
106	Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 1981, 86, 6115-6132.	3.3	957
107	The uppermost mantle P wave velocities beneath Turkey and Iran. Geophysical Research Letters, 1980, 7, 77-80.	1.5	20
108	Seismicity and fault plane solutions of intermediate depth earthquakes in the Pamirâ€Hindu Kush Region. Journal of Geophysical Research, 1980, 85, 1358-1364.	3.3	57

#	Article	IF	CITATIONS
109	Microearthquake seismicity and fault plane solutions in the Hindu Kush Region and their tectonic implications. Journal of Geophysical Research, 1980, 85, 1365-1387.	3.3	163
110	Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions. Journal of Geophysical Research, 1979, 84, 3425-3459.	3.3	731
111	Subduction of continental lithosphere: Some constraints and uncertainties. Geology, 1979, 7, 58.	2.0	200
112	Earthquake recurrence intervals and plate tectonics. Bulletin of the Seismological Society of America, 1979, 69, 115-133.	1.1	267
113	Active tectonics of Tibet. Journal of Geophysical Research, 1978, 83, 5361-5375.	3.3	632
114	The spectral content of Pamir-Hindu Kush intermediate depth earthquakes: Evidence for a high-Q zone in the upper mantle. Journal of Geophysical Research, 1977, 82, 2931-2943.	3.3	20
115	Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 1975, 189, 419-426.	6.0	3,792
116	Distribution of stresses in the descending lithosphere from a global survey of focalâ€mechanism solutions of mantle earthquakes. Reviews of Geophysics, 1971, 9, 103-174.	9.0	916
117	Mantle Earthquake Mechanisms and the Sinking of the Lithosphere. Nature, 1969, 223, 1121-1124.	13.7	320
118	Lateral variations of attenuation in the upper mantle and discontinuities in the lithosphere. Journal of Geophysical Research, 1969, 74, 2648-2682.	3.3	332