
Claire Gaveriaux-Ruff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082731/publications.pdf Version: 2024-02-01

CLAIDE CAVEDIALLY-PLIEE

#	Article	IF	CITATIONS
1	Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice. Journal of Neuroscience Research, 2022, 100, 203-219.	2.9	36
2	Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. Journal of Neuroinflammation, 2022, 19, 7.	7.2	6
3	Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nature Communications, 2021, 12, 426.	12.8	12
4	Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models. Neuroscience Letters, 2021, 753, 135844.	2.1	21
5	Delta Opioid Receptor in Astrocytes Contributes to Neuropathic Cold Pain and Analgesic Tolerance in Female Mice. Frontiers in Cellular Neuroscience, 2021, 15, 745178.	3.7	7
6	The Human SCN10AG1662S Point Mutation Established in Mice Impacts on Mechanical, Heat, and Cool Sensitivity. Frontiers in Pharmacology, 2021, 12, 780132.	3.5	5
7	Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerveâ€injured mice. British Journal of Pharmacology, 2020, 177, 1187-1205.	5.4	14
8	Topical treatment with a mu opioid receptor agonist alleviates corneal allodynia and corneal nerve sensitization in mice. Biomedicine and Pharmacotherapy, 2020, 132, 110794.	5.6	12
9	μ-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. ENeuro, 2020, 7, ENEURO.0146-20.2020.	1.9	23
10	Role of peripheral sensory neuron mu-opioid receptors in nociceptive, inflammatory, and neuropathic pain. Regional Anesthesia and Pain Medicine, 2020, 45, 907-916.	2.3	9
11	Peripheral Delta Opioid Receptors Mediate Formoterol Anti-allodynic Effect in a Mouse Model of Neuropathic Pain. Frontiers in Molecular Neuroscience, 2019, 12, 324.	2.9	8
12	Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain. Pain, 2018, 159, 1607-1620.	4.2	20
13	Synthesis of 7β-hydroxy-8-ketone opioid derivatives with antagonist activity at mu- and delta-opioid receptors. European Journal of Medicinal Chemistry, 2018, 151, 495-507.	5.5	3
14	Analgesia linked to Nav1.7 loss of function requires µ- and δ-opioid receptors. Wellcome Open Research, 2018, 3, 101.	1.8	21
15	Peripheral delta opioid receptors mediate duloxetine antiallodynic effect in a mouse model of neuropathic pain. European Journal of Neuroscience, 2018, 48, 2231-2246.	2.6	15
16	Microglia Express Mu Opioid Receptor: Insights From Transcriptomics and Fluorescent Reporter Mice. Frontiers in Psychiatry, 2018, 9, 726.	2.6	54
17	Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food. Biological Psychiatry, 2017, 81, 778-788.	1.3	53
18	Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Scientific Reports, 2017, 7, 10406.	3.3	73

#	Article	IF	CITATIONS
19	Mu and delta opioid receptor knockout mice show increased colonic sensitivity. European Journal of Pain, 2017, 21, 623-634.	2.8	17
20	Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience, 2016, 338, 160-182.	2.3	299
21	Leukocyte opioid receptors mediate analgesia via Ca 2+ -regulated release of opioid peptides. Brain, Behavior, and Immunity, 2016, 57, 227-242.	4.1	61
22	Deletion of the mu opioid receptor gene in mice reshapes the reward–aversion connectome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11603-11608.	7.1	64
23	<scp>l̂ºâ€</scp> opioid receptors are not necessary for the antidepressant treatment of neuropathic pain. British Journal of Pharmacology, 2015, 172, 1034-1044.	5.4	10
24	A Novel Anxiogenic Role for the Delta Opioid Receptor Expressed in GABAergic Forebrain Neurons. Biological Psychiatry, 2015, 77, 404-415.	1.3	31
25	<i>In vivo</i> properties of <scp>KNT</scp> â€127, a novel δ opioid receptor agonist: receptor internalization, antihyperalgesia and antidepressant effects in mice. British Journal of Pharmacology, 2014, 171, 5376-5386.	5.4	34
26	Opiate-Induced Analgesia: Contributions From Mu, Delta and Kappa Opioid Receptors Mouse Mutants. Current Pharmaceutical Design, 2014, 19, 7373-7381.	1.9	31
27	Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice. PLoS ONE, 2013, 8, e74706.	2.5	102
28	μ-Opioid Receptor Antibody Reveals Tissue-Dependent Specific Staining and Increased Neuronal μ-Receptor Immunoreactivity at the Injured Nerve Trunk in Mice. PLoS ONE, 2013, 8, e79099.	2.5	25
29	RSK2 Signaling in Medial Habenula Contributes to Acute Morphine Analgesia. Neuropsychopharmacology, 2012, 37, 1288-1296.	5.4	27
30	Î-Opioid Mechanisms for ADL5747 and ADL5859 Effects in Mice: Analgesia, Locomotion, and Receptor Internalization. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 799-807.	2.5	69
31	Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nature Neuroscience, 2011, 14, 1017-1022.	14.8	107
32	The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends in Pharmacological Sciences, 2011, 32, 581-590.	8.7	240
33	Delta opioid receptor analgesia. Behavioural Pharmacology, 2011, 22, 405-414.	1.7	87
34	Genetic ablation of delta opioid receptors in nociceptive sensory neurons increases chronic pain and abolishes opioid analgesia. Pain, 2011, 152, 1238-1248.	4.2	139
35	Influence of Endogenous Opioid Systems on T Lymphocytes as Assessed by the Knockout of Mu, Delta and Kappa Opioid Receptors. Journal of NeuroImmune Pharmacology, 2011, 6, 608-616.	4.1	14
36	Muâ€opioid receptors are not necessary for nortriptyline treatment of neuropathic allodynia. European Journal of Pain, 2010, 14, 700-704.	2.8	29

CLAIRE GAVERIAUX-RUFF

#	Article	IF	CITATIONS
37	In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists. PLoS ONE, 2009, 4, e5425.	2.5	159
38	The delta opioid receptor: a novel therapeutic target for pain and even more Douleur Et Analgesie, 2009, 22, 201-209.	0.1	0
39	Opioids and the skin – where do we stand?. Experimental Dermatology, 2009, 18, 424-430.	2.9	120
40	Opioid receptors in skin - link between stress and skin disease?. Experimental Dermatology, 2008, 15, 643-648.	2.9	1
41	Inflammatory pain is enhanced in delta opioid receptorâ€knockout mice. European Journal of Neuroscience, 2008, 27, 2558-2567.	2.6	95
42	Delta-Opioid Receptors Are Critical for Tricyclic Antidepressant Treatment of Neuropathic Allodynia. Biological Psychiatry, 2008, 63, 633-636.	1.3	86
43	Â-Opioid receptor activation prevents acute hepatic inflammation and cell death. Gut, 2007, 56, 974-981.	12.1	27
44	Deletion of μ- and κ-Opioid Receptors in Mice Changes Epidermal Hypertrophy, Density of Peripheral Nerve Endings, and Itch Behavior. Journal of Investigative Dermatology, 2007, 127, 1479-1488.	0.7	52
45	Conditional gene targeting in the mouse nervous system: Insights into brain function and diseases. , 2007, 113, 619-634.		129
46	Deletion of Î ⁻ opioid receptor in mice alters skin differentiation and delays wound healing. Differentiation, 2006, 74, 174-185.	1.9	63
47	Dissociation of Analgesic and Hormonal Responses to Forced Swim Stress Using Opioid Receptor Knockout Mice. Neuropsychopharmacology, 2006, 31, 1733-1744.	5.4	68
48	Knockin mice expressing fluorescent Â-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9691-9696.	7.1	230
49	Antibody response and allogeneic mixed lymphocyte reaction in mu-, delta-, and kappa-opioid receptor knockout mice. Journal of Neuroimmunology, 2004, 147, 121-122.	2.3	6
50	Enhanced humoral response in kappa-opioid receptor knockout mice. Journal of Neuroimmunology, 2003, 134, 72-81.	2.3	32
51	Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation. Journal of Clinical Investigation, 2003, 111, 1329-1338.	8.2	84
52	Anti-inflammatory properties of the \hat{l} ¹ /4 opioid receptor support its use in the treatment of colon inflammation. Journal of Clinical Investigation, 2003, 111, 1329-1338.	8.2	144
53	Exploring the opioid system by gene knockout. Progress in Neurobiology, 2002, 66, 285-306.	5.7	555
54	Opioid receptor genes inactivated in mice: the highlights. Neuropeptides, 2002, 36, 62-71.	2.2	155

#	Article	IF	CITATIONS
55	Orphanin FQ/nociceptin binds to functionally coupled ORL1 receptors on human immune cell lines and alters peripheral blood mononuclear cell proliferation. Brain Research Bulletin, 2001, 54, 655-660.	3.0	42
56	A Single Nucleotide Polymorphic Mutation in the Human μ-Opioid Receptor Severely Impairs Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 3130-3137.	3.4	226
57	Down-regulation of mu-opioid receptor expression in rat oligodendrocytes during their development in vitro. , 2000, 60, 10-20.		25
58	Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses. Nature Genetics, 2000, 25, 195-200.	21.4	644
59	Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. Journal of Neuroimmunology, 1998, 81, 184-192.	2.3	119
60	Regulation of κ-opioid receptor mRNA level by cyclic AMP and growth factors in cultured rat glial cells. Molecular Brain Research, 1998, 55, 141-150.	2.3	14
61	Abolition of morphine-immunosuppression in mice lacking the Â-opioid receptor gene. Proceedings of the United States of America, 1998, 95, 6326-6330.	7.1	158
62	Opioid Receptors: Gene Structure and Function. , 1998, , 1-20.		8
63	Detection of opioid receptor mRNA by RT-PCR reveals alternative splicing for the δ- and κ-opioid receptors. Molecular Brain Research, 1997, 48, 298-304.	2.3	62
64	kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7006-7010.	7.1	193
65	Identification of $\hat{I}^{e_{-}}$ and \hat{I}' -opioid receptor transcripts in immune cells. FEBS Letters, 1995, 369, 272-276.	2.8	129
66	Delta-opioid receptor gene expression in the mouse forebrain: Localization in cholinergic neurons of the striatum. Neuroscience, 1994, 62, 635-640.	2.3	62
67	Derivatives of a Novel Cyclopeptolide. 2. Synthesis, Activity against Multidrug Resistance in CHO and KB Cells in vitro, and Structure-Activity Relationships. Journal of Medicinal Chemistry, 1994, 37, 1918-1928.	6.4	15
68	Atrial G protein-activated K+ channel: expression cloning and molecular properties Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10235-10239.	7.1	349
69	SDZ 280-446, a novel semi-synthetic cyclopeptolide: in vitro and in vivo circumvention of the P-glycoprotein-mediated tumour cell multidrug resistance. British Journal of Cancer, 1992, 65, 11-18.	6.4	44
70	The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 12048-12052.	7.1	932
71	The C57BL/6 nude, beige mouse: A model of combined T cell and NK effector cell immunodeficiency. Cellular Immunology, 1989, 120, 218-229.	3.0	21
72	Overcoming multidrug resistance in Chinese hamster ovary cells in vitro by cyclosporin A (Sandimmune) and non-immunosuppressive derivatives. British Journal of Cancer, 1989, 60, 867-871.	6.4	59

#	Article	IF	CITATIONS
73	Indirect double sandwich ELISA for the specific and quantitative measurement of mouse IgM, IgA and IgG subclasses. Journal of Immunological Methods, 1989, 119, 117-125.	1.4	53
74	An enzyme-linked lectin-binding assay on cells (CELLBA) for the comparison of lectin receptor expression on cell surfaces. Journal of Immunological Methods, 1987, 104, 173-182.	1.4	8
75	A comparison of five different methods for the detection of TNP specific mouse IgE: ELISA, ELISA on cells, rosetting, granule enzyme release assay and passive cutaneous anaphylaxis. Journal of Immunological Methods, 1986, 93, 107-114.	1.4	13
76	Opioids and Pain. , 0, , 728-769.		0
77	The Human SCN9AR185H Point Mutation Induces Pain Hypersensitivity and Spontaneous Pain in Mice. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	5