Clive Wasserfall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward defining the autoimmune microbiome for type 1 diabetes. ISME Journal, 2011, 5, 82-91.	9.8	709
2	Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS ONE, 2011, 6, e25792.	2.5	660
3	Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology, 1999, 29, 328-333.	7.3	593
4	Heme Oxygenase-1 Modulates Early Inflammatory Responses. American Journal of Pathology, 2004, 165, 1045-1053.	3.8	393
5	Functional Defects and the Influence of Age on the Frequency of CD4+CD25+ T-Cells in Type 1 Diabetes. Diabetes, 2005, 54, 1407-1414.	0.6	344
6	Insulitis and \hat{I}^2 -Cell Mass in the Natural History of Type 1 Diabetes. Diabetes, 2016, 65, 719-731.	0.6	292
7	Lactobacillus johnsonii N6.2 Mitigates the Development of Type 1 Diabetes in BB-DP Rats. PLoS ONE, 2010, 5, e10507.	2.5	227
8	No Alterations in the Frequency of FOXP3+ Regulatory T-Cells in Type 1 Diabetes. Diabetes, 2007, 56, 604-612.	0.6	214
9	Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME Journal, 2009, 3, 536-548.	9.8	211
10	Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell lonotypic monoclonal antibody, 6B11. Immunology, 2007, 122, 1-14.	4.4	190
11	Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2012, 28, 608-617.	4.0	178
12	Â1-Antitrypsin Protects Â-Cells From Apoptosis. Diabetes, 2007, 56, 1316-1323.	0.6	171
13	Combination Therapy With Clucagon-Like Peptide-1 and Gastrin Restores Normoglycemia in Diabetic NOD Mice. Diabetes, 2008, 57, 3281-3288.	0.6	169
14	Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. Journal of Clinical Investigation, 2012, 122, 1717-1725.	8.2	168
15	Urinary CD80 Excretion Increases in Idiopathic Minimal-Change Disease. Journal of the American Society of Nephrology: JASN, 2009, 20, 260-266.	6.1	165
16	A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clinical Immunology, 2008, 126, 303-314.	3.2	163
17	Inhibition of Type 1 Diabetes Correlated to a <i>Lactobacillus johnsonii</i> N6.2-Mediated Th17 Bias. Journal of Immunology, 2011, 186, 3538-3546.	0.8	147
18	B cells enhance early innate immune responses during bacterial sepsis. Journal of Experimental Medicine, 2011, 208, 1673-1682.	8.5	144

#	Article	IF	CITATIONS
19	Radial Artery Tonometry Demonstrates Arterial Stiffness in Children With Type 1 Diabetes. Diabetes Care, 2004, 27, 2911-2917.	8.6	141
20	Anti-thymocyte globulin/C-CSF treatment preserves β cell function in patients with established type 1 diabetes. Journal of Clinical Investigation, 2015, 125, 448-455.	8.2	140
21	The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes () Tj ETQq1 1 0.7 15, 1-9.	84314 rgl 2.9	3T /Overloc <mark>k</mark> 139
22	Autologous umbilical cord blood infusion for type 1 diabetes. Experimental Hematology, 2008, 36, 710-715.	0.4	136
23	Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia, 2010, 53, 690-698.	6.3	134
24	Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13913-13918.	7.1	133
25	Oral Delivery of Glutamic Acid Decarboxylase (GAD)-65 and IL10 by <i>Lactococcus lactis</i> Reverses Diabetes in Recent-Onset NOD Mice. Diabetes, 2014, 63, 2876-2887.	0.6	129
26	Systemic Overexpression of IL-10 Induces CD4+CD25+ Cell Populations In Vivo and Ameliorates Type 1 Diabetes in Nonobese Diabetic Mice in a Dose-Dependent Fashion. Journal of Immunology, 2003, 171, 2270-2278.	0.8	125
27	Pancreas Organ Weight in Individuals With Disease-Associated Autoantibodies at Risk for Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2012, 308, 2337.	7.4	124
28	T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2009, 24, 1691-1698.	1.7	121
29	Reduced Serum Vitamin D–Binding Protein Levels Are Associated With Type 1 Diabetes. Diabetes, 2011, 60, 2566-2570.	0.6	119
30	Influence of Fecal Sample Storage on Bacterial Community Diversity. Open Microbiology Journal, 2009, 3, 40-46.	0.7	118
31	An Integral Role for Heme Oxygenase-1 and Carbon Monoxide in Maintaining Peripheral Tolerance by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2005, 174, 5181-5186.	0.8	111
32	Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation. PLoS ONE, 2007, 2, e1309.	2.5	111
33	Central Role for Interleukin-2 in Type 1 Diabetes. Diabetes, 2012, 61, 14-22.	0.6	109
34	Suppression by CD4+CD25+ Regulatory T Cells Is Dependent on Expression of Heme Oxygenase-1 in Antigen-Presenting Cells. American Journal of Pathology, 2008, 173, 154-160.	3.8	107
35	Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2013, 62, 737-746.	4.2	106
36	Interleukin 10 attenuates neointimal proliferation and inflammation in aortic allografts by a heme oxygenase-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7251-7256.	7.1	101

#	Article	IF	CITATIONS
37	PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science Translational Medicine, 2017, 9, .	12.4	99
38	Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Therapy, 2004, 11, 181-186.	4.5	97
39	Adeno-Associated Virus-Mediated IL-10 Gene Therapy Inhibits Diabetes Recurrence in Syngeneic Islet Cell Transplantation of NOD Mice. Diabetes, 2003, 52, 708-716.	0.6	92
40	The influence of type 1 diabetes on pancreatic weight. Diabetologia, 2016, 59, 217-221.	6.3	88
41	Autologous Umbilical Cord Blood Transfusion in Very Young Children With Type 1 Diabetes. Diabetes Care, 2009, 32, 2041-2046.	8.6	87
42	A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatric Nephrology, 2006, 21, 603-610.	1.7	85
43	Efficient Ex Vivo Transduction of Pancreatic Islet Cells With Recombinant Adeno-Associated Virus Vectors. Diabetes, 2001, 50, 515-520.	0.6	81
44	α1-Antitrypsin Gene Therapy Modulates Cellular Immunity and Efficiently Prevents Type 1 Diabetes in Nonobese Diabetic Mice. Human Gene Therapy, 2006, 17, 625-634.	2.7	81
45	A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clinical Immunology, 2015, 160, 90-102.	3.2	81
46	Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens. Diabetes, 2015, 64, 158-171.	0.6	80
47	Diabetes Acceleration or Prevention by a Coxsackievirus B4 Infection: Critical Requirements for both Interleukin-4 and Gamma Interferon. Journal of Virology, 2005, 79, 1045-1052.	3.4	79
48	Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metabolism, 2017, 26, 568-575.e3.	16.2	77
49	Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2007, 2, 325-332.	3.3	76
50	Murine Antithymocyte Globulin Therapy Alters Disease Progression in NOD Mice by a Time-Dependent Induction of Immunoregulation. Diabetes, 2008, 57, 405-414.	0.6	74
51	Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. Journal of Translational Medicine, 2011, 9, 21.	4.4	73
52	Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults. Frontiers in Immunology, 2017, 8, 655.	4.8	73
53	Adiponectin and Leptin Concentrations May Aid in Discriminating Disease Forms in Children and Adolescents With Type 1 and Type 2 Diabetes. Diabetes Care, 2004, 27, 2010-2014.	8.6	69
54	Vitamin D Levels in Subjects With and Without Type 1 Diabetes Residing in a Solar Rich Environment. Diabetes Care, 2009, 32, 1977-1979.	8.6	69

#	Article	IF	CITATIONS
55	Immune Depletion With Cellular Mobilization Imparts Immunoregulation and Reverses Autoimmune Diabetes in Nonobese Diabetic Mice. Diabetes, 2009, 58, 2277-2284.	0.6	68
56	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	10.3	68
57	Loss of Intra-Islet CD20 Expression May Complicate Efficacy of B-Cell–Directed Type 1 Diabetes Therapies. Diabetes, 2011, 60, 2914-2921.	0.6	65
58	Progressive Erosion of β-Cell Function Precedes the Onset of Hyperglycemia in the NOD Mouse Model of Type 1 Diabetes. Diabetes, 2011, 60, 2086-2091.	0.6	64
59	Autoantibody markers for the diagnosis and prediction of type 1 diabetes. Autoimmunity Reviews, 2006, 5, 424-428.	5.8	62
60	Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes, 2016, 65, 3765-3775.	0.6	62
61	Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide. Diabetes Care, 2011, 34, 2567-2569.	8.6	61
62	Serological autoantibody profiling of type 1 diabetes by protein arrays. Journal of Proteomics, 2013, 94, 486-496.	2.4	61
63	Impact of Humoral Immune Response on Distribution and Efficacy of Recombinant Adeno-Associated Virus-Derived Acid α-Clucosidase in a Model of Glycogen Storage Disease Type II. Human Gene Therapy, 2005, 16, 68-80.	2.7	60
64	Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Research, 2005, 1041, 223-230.	2.2	59
65	Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays. Diabetes, 2016, 65, 285-296.	0.6	59
66	Influence of Membrane CD25 Stability on T Lymphocyte Activity: Implications for Immunoregulation. PLoS ONE, 2009, 4, e7980.	2.5	59
67	Hyperghrelinemia in Praderâ€Willi syndrome begins in early infancy long before the onset of hyperphagia. American Journal of Medical Genetics, Part A, 2015, 167, 69-79.	1.2	58
68	Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomaterials Science and Engineering, 2019, 5, 2631-2646.	5.2	58
69	Reversal of Diabetes in NOD Mice by Clinical-Grade Proinsulin and IL-10–Secreting Lactococcus lactis in Combination With Low-Dose Anti-CD3 Depends on the Induction of Foxp3-Positive T Cells. Diabetes, 2017, 66, 448-459.	0.6	57
70	Antigen Based Therapies to Prevent Diabetes in NOD Mice. Journal of Autoimmunity, 1996, 9, 349-356.	6.5	53
71	Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. Journal of Materials Chemistry B, 2014, 2, 2562-2574.	5.8	53
72	BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease. PLoS ONE, 2011, 6, e16610.	2.5	52

5

#	Article	IF	CITATIONS
73	Murine Model for Cystic Fibrosis Bone Disease Demonstrates Osteopenia and Sex-Related Differences in Bone Formation. Pediatric Research, 2009, 65, 311-316.	2.3	48
74	Comment on: Brugman S et al. (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108. Diabetologia, 2006, 50, 220-221.	6.3	47
75	Autologous Umbilical Cord Blood Infusion followed by Oral Docosahexaenoic Acid and Vitamin D Supplementation for C-Peptide Preservation in Children with Type 1 Diabetes. Biology of Blood and Marrow Transplantation, 2013, 19, 1126-1129.	2.0	47
76	The relationship between humoral and cellular immunity to IA-2 in IDDM. Diabetes, 1998, 47, 566-569.	0.6	46
77	Intradermal α1-antitrypsin therapy avoids fatal anaphylaxis, prevents type 1 diabetes and reverses hyperglycaemia in the NOD mouse model of the disease. Diabetologia, 2010, 53, 2198-2204.	6.3	44
78	Increased Complement Activation in Human Type 1 Diabetes Pancreata. Diabetes Care, 2013, 36, 3815-3817.	8.6	44
79	Neurobehavioral Changes Resulting from Recombinase Activation Gene 1 Deletion. Vaccine Journal, 2003, 10, 13-18.	3.1	43
80	Cystic Fibrosis Transmembrane Conductance Regulator Deficiency Exacerbates Islet Cell Dysfunction After Â-Cell Injury. Diabetes, 2006, 55, 1939-1945.	0.6	42
81	Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes. Diabetes, 2015, 64, 3885-3890.	0.6	42
82	Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatric Nephrology, 2013, 28, 1803-1812.	1.7	41
83	Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked?. Diabetes, 2017, 66, 1443-1452.	0.6	41
84	Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care, 2017, 40, 577-582.	8.6	40
85	Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Science Translational Medicine, 2016, 8, 361ra137.	12.4	38
86	Validation of a rapid type 1 diabetes autoantibody screening assay for community-based screening of organ donors to identify subjects at increased risk for the disease. Clinical and Experimental Immunology, 2016, 185, 33-41.	2.6	38
87	Tracking the Antibody Immunome in Type 1 Diabetes Using Protein Arrays. Journal of Proteome Research, 2017, 16, 195-203.	3.7	38
88	Butyrate and Type 1 Diabetes Mellitus: Can We Fix the Intestinal Leak?. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 414-417.	1.8	37
89	Exendinâ€4 Therapy in NOD Mice with Newâ€Onset Diabetes Increases Regulatory T Cell Frequency. Annals of the New York Academy of Sciences, 2008, 1150, 152-156.	3.8	36
90	Influence of Serum and Soluble CD25 (sCD25) on Regulatory and Effector Tâ€cell Function in Hepatocellular Carcinoma. Scandinavian Journal of Immunology, 2010, 72, 293-301.	2.7	36

#	Article	IF	CITATIONS
91	Minimal change disease: a dysregulation of the podocyte CD80–CTLA-4 axis?. Pediatric Nephrology, 2014, 29, 2333-2340.	1.7	36
92	Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human Type 1 Diabetes. Scientific Reports, 2017, 7, 9467.	3.3	36
93	Inhibition of VEGFR-2 Reverses Type 1 Diabetes in NOD Mice by Abrogating Insulitis and Restoring Islet Function. Diabetes, 2013, 62, 2870-2878.	0.6	35
94	Hepatocellular Carcinoma Immunopathogenesis: Clinical Evidence for Global T Cell Defects and an Immunomodulatory Role for Soluble CD25 (sCD25). Digestive Diseases and Sciences, 2010, 55, 484-495.	2.3	34
95	Identification of adeno-associated viral vectors suitable for intestinal gene delivery and modulation of experimental colitis. American Journal of Physiology - Renal Physiology, 2012, 302, G296-G308.	3.4	34
96	A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice. Diabetes, 2016, 65, 1310-1316.	0.6	34
97	Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice. PLoS ONE, 2013, 8, e54712.	2.5	33
98	The threshold hypothesis: solving the equation of nurture vs nature in type 1 diabetes. Diabetologia, 2011, 54, 2232-2236.	6.3	31
99	Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10196-10201.	7.1	31
100	Enhanced IgE allergic response to Aspergillus fumigatus in CFTRâ^'/â^' mice. Laboratory Investigation, 2006, 86, 130-140.	3.7	29
101	Immunization Therapies in the Prevention of Diabetes. Journal of Autoimmunity, 1997, 10, 287-292.	6.5	28
102	Immunity to adeno-associated virus serotype 2 delivered transgenes imparted by genetic predisposition to autoimmunity. Gene Therapy, 2004, 11, 233-240.	4.5	28
103	Anti-thymocyte globulin (ATG) differentially depletes naÃ ⁻ ve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice. BMC Immunology, 2012, 13, 70.	2.2	27
104	Adeno-Associated Viral Vector-Mediated Interleukin-10 Prolongs Allograft Survival in a Rat Kidney Transplantation Model. American Journal of Transplantation, 2007, 7, 1112-1120.	4.7	26
105	Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy. Journal of Immunology, 2017, 199, 3757-3770.	0.8	26
106	Effect of Oral and Intravenous Insulin and Glutamic Acid Decarboxylase in NOD Mice. Autoimmunity, 1997, 26, 139-151.	2.6	25
107	Novel Leptin Receptor Mutation in NOD/LtJ Mice Suppresses Type 1 Diabetes Progression: I. Pathophysiological Analysis. Diabetes, 2005, 54, 2525-2532.	0.6	25
108	Nardilysin-Dependent Proteolysis of Cell-Associated VTCN1 (B7-H4) Marks Type 1 Diabetes Development. Diabetes, 2014, 63, 3470-3482.	0.6	25

#	Article	IF	CITATIONS
109	Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes. Journal of Immunology, 2017, 198, 4255-4267.	0.8	25
110	Glucose transporter-2 (GLUT2) promoter mediated transgenic insulin production reduces hyperglycemia in diabetic mice. FEBS Letters, 2005, 579, 5759-5764.	2.8	24
111	Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes, 2018, 67, 697-703.	0.6	24
112	PANDER-induced cell-death genetic networks in islets reveal central role for caspase-3 and cyclin-dependent kinase inhibitor 1A (p21). Gene, 2006, 369, 134-141.	2.2	22
113	The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNÎ ³ production by PBMC. Journal of Autoimmunity, 2013, 44, 8-12.	6.5	22
114	Combination Therapy Reverses Hyperglycemia in NOD Mice With Established Type 1 Diabetes. Diabetes, 2015, 64, 3873-3884.	0.6	22
115	Factors That Influence the Quality of RNA From the Pancreas of Organ Donors. Pancreas, 2017, 46, 252-259.	1.1	21
116	Heterophile antibodies segregate in families and are associated with protection from type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8116-8119.	7.1	20
117	Development of New-Generation HU-PBMC-NOD/SCID Mice to Study Human Islet Alloreactivity. Annals of the New York Academy of Sciences, 2007, 1103, 90-93.	3.8	20
118	Pancreatic adenocarcinoma patients with localised chronic severe pancreatitis show an increased number of single beta cells, without alterations in fractional insulin area. Diabetologia, 2009, 52, 262-270.	6.3	20
119	Exendin-4 treatment of nonobese diabetic mice increases beta-cell proliferation and fractional insulin reactive area. Journal of Diabetes and Its Complications, 2010, 24, 163-167.	2.3	20
120	The Tyrphostin Agent AG490 Prevents and Reverses Type 1 Diabetes in NOD Mice. PLoS ONE, 2012, 7, e36079.	2.5	20
121	Diabetes Leads to Alterations in Normal Metabolic Transitions of Pregnancy as Revealed by Time-Course Metabolomics. Metabolites, 2020, 10, 350.	2.9	19
122	Synchronization of the Normal Human Peripheral Immune System: A Comprehensive Circadian Systems Immunology Analysis. Scientific Reports, 2020, 10, 672.	3.3	19
123	Image-Based Machine Learning Algorithms for Disease Characterization in the Human Type 1 Diabetes Pancreas. American Journal of Pathology, 2021, 191, 454-462.	3.8	19
124	Aberrant monocyte prostaglandin synthase 2 (PGS2) expression in type 1 diabetes before and after disease onset. Pediatric Diabetes, 2003, 4, 10-18.	2.9	18
125	The combined effects on neuronal activation and blood–brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI. NeuroImage, 2010, 50, 1384-1391.	4.2	18
126	Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Frontiers in Immunology, 2020, 11, 574447.	4.8	18

#	Article	IF	CITATIONS
127	Rabbit Polyclonal Mouse Antithymocyte Globulin Administration Alters Dendritic Cell Profile and Function in NOD Mice to Suppress Diabetogenic Responses. Journal of Immunology, 2009, 182, 4608-4615.	0.8	17
128	The granulocyte colony stimulating factor pathway regulates autoantibody production in a murine induced model of systemic lupus erythematosus. Arthritis Research and Therapy, 2013, 15, R49.	3.5	17
129	Alpha-1 Antitrypsin Treatment of Spontaneously Diabetic Nonobese Diabetic Mice Receiving Islet Allografts. Transplantation Proceedings, 2008, 40, 457-458.	0.6	15
130	CFTR mutations impart elevated immune reactivity in a murine model of cystic fibrosis related diabetes. Cytokine, 2008, 44, 154-159.	3.2	15
131	Histological validation of a type 1 diabetes clinical diagnostic model for classification of diabetes. Diabetic Medicine, 2020, 37, 2160-2168.	2.3	15
132	geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Genome Biology, 2021, 22, 333.	8.8	15
133	Clinical features, biochemistry and HLA-DRB1 status in children and adolescents with diabetes in Dhaka, Bangladesh. Diabetes Research and Clinical Practice, 2019, 158, 107894.	2.8	14
134	Adeno-associated virus transduction of islets with interleukin-4 results in impaired metabolic function in syngeneic marginal islet mass transplantation1. Transplantation, 2002, 74, 1184-1186.	1.0	13
135	High frequency of abnormal glucose tolerance in DQA1*0102/DQB1*0602 relatives identified as part of the Diabetes Prevention Trial?Type 1 Diabetes. Diabetologia, 2005, 48, 68-74.	6.3	13
136	Serum levels of soluble CD25 as a marker for hepatocellular carcinoma. Oncology Letters, 2012, 4, 840-846.	1.8	13
137	Prolonged Islet Allograft Survival by Alpha-1 Antitrypsin: The Role of Humoral Immunity. Transplantation Proceedings, 2008, 40, 455-456.	0.6	12
138	Taking a Daily Vitamin to Prevent Type 1 Diabetes?. Diabetes, 2009, 58, 24-25.	0.6	12
139	Tyrphostin AG490 Agent Modestly but Significantly Prevents Onset of Type 1 in NOD Mouse; Implication of Immunologic and Metabolic Effects of a Jak-Stat Pathway Inhibitor. Journal of Clinical Immunology, 2012, 32, 1038-1047.	3.8	12
140	Mobilization without immune depletion fails to restore immunological tolerance or preserve beta cell function in recent onset type 1 diabetes. Clinical and Experimental Immunology, 2016, 183, 350-357.	2.6	12
141	Clinical features, biochemistry and HLA-DRB1 status in youth-onset type 1 diabetes in Pakistan. Diabetes Research and Clinical Practice, 2019, 149, 9-17.	2.8	12
142	Persistent STAT5 Phosphorylation and Epigenetic Dysregulation of GM-CSF and PGS2/COX2 Expression in Type 1 Diabetic Human Monocytes. PLoS ONE, 2013, 8, e76919.	2.5	12
143	Human alpha 1-antitrypsin therapy induces fatal anaphylaxis in non-obese diabetic mice. Clinical and Experimental Immunology, 2008, 154, 15-21.	2.6	11
144	Neonatal Formula Feeding Leads to Immunological Alterations in an Animal Model of Type 1 Diabetes. Pediatric Research, 2008, 63, 303-307.	2.3	11

#	Article	IF	CITATIONS
145	Regulated hAAT Expression from a Novel rAAV Vector and Its Application in the Prevention of Type 1 Diabetes. Journal of Clinical Medicine, 2019, 8, 1321.	2.4	11
146	Low-Dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report. Diabetes, 2021, 70, 1123-1129.	0.6	11
147	Membrane marker selection for segmenting single cell spatial proteomics data. Nature Communications, 2022, 13, 1999.	12.8	11
148	Epidemiology of childhood-onset type 1 diabetes in Azerbaijan: Incidence, clinical features, biochemistry, and HLA-DRB1 status. Diabetes Research and Clinical Practice, 2018, 144, 252-259.	2.8	9
149	Removing Formaldehydeâ€Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalinâ€Fixed Paraffinâ€Embedded Tissues. Angewandte Chemie - International Edition, 2020, 59, 22584-22590.	13.8	8
150	Genetic Composition and Autoantibody Titers Model the Probability of Detecting C-Peptide Following Type 1 Diabetes Diagnosis. Diabetes, 2021, 70, 932-943.	0.6	8
151	Systemic Overexpression of Interleukin-10 Fails to Protect Allogeneic Islet Transplants in Nonobese Diabetic Mice. Transplantation, 2005, 80, 530-533.	1.0	7
152	Clinical features, biochemistry, and <i>HLAâ€DRB1</i> status in youthâ€onset type 1 diabetes in Sudan. Pediatric Diabetes, 2021, 22, 749-757.	2.9	7
153	Monogenic Diabetes and Integrated Stress Response Genes Display Altered Gene Expression in Type 1 Diabetes. Diabetes, 2021, 70, 1885-1897.	0.6	7
154	Overexpression of the <i>PTPN22</i> Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4+ T Cell Activation. Journal of Immunology, 2021, 207, 849-859.	0.8	7
155	Altered cellular localisation and expression, together with unconventional protein trafficking, of prion protein, PrPC, in type 1 diabetes. Diabetologia, 2021, 64, 2279-2291.	6.3	7
156	High Illicit Drug Abuse and Suicide in Organ Donors With Type 1 Diabetes. Diabetes Care, 2017, 40, e122-e123.	8.6	6
157	Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes. Diabetologia, 2021, 64, 1822-1833.	6.3	6
158	Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia, 2018, 61, 954-958.	6.3	5
159	Targeted metabolomic analysis identifies increased serum levels of GABA and branched chain amino acids in canine diabetes. Metabolomics, 2021, 17, 100.	3.0	4
160	Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice. Genetics & Epigenetics, 2015, 7, GEG.S29696.	2.5	3
161	Exploration of autoantibody responses in canine diabetes using protein arrays. Scientific Reports, 2022, 12, 2490.	3.3	3
162	Freeze-thaw increases adeno-associated virus transduction of cells. American Journal of Physiology - Cell Physiology, 2006, 291, C386-C392.	4.6	2

#	ARTICLE	IF	CITATIONS
163	The use of leptin as treatment for type 1 diabetes mellitus: counterpoint. Pediatric Diabetes, 2012, 13, 74-76.	2.9	2
164	Assessing insulin sensitivity and resistance in syndromes of severe short stature. Growth Hormone and IGF Research, 2020, 53-54, 101339.	1.1	2
165	71. Alpha 1 Antitrypsin (AAT) Gene Therapy for the Prevention of Type 1 Diabetes. Molecular Therapy, 2006, 13, S30.	8.2	1
166	Influence of Tyrphostin AG490 on the expression of diabetes-associated markers in human adipocytes. Immunogenetics, 2013, 65, 83-90.	2.4	1
167	195-LB: Metabolomic Characterization of Laron and Guevara-Rosenbloom Syndromes Using UHPLC-HRMS. Diabetes, 2020, 69, 195-LB.	0.6	1
168	Regulatory T Cells Require Serum for Suppression of Effector T Cell Proliferation and Express Stable Membrane-bound CD25. Clinical Immunology, 2007, 123, S4.	3.2	0
169	T.8. Amelioration of Insulitis and Reversal of Diabetes in NOD Mice by Murine Anti-Thymocyte Globulin and Granulocyte-Colony Stimulating Factor Combination Therapy. Clinical Immunology, 2009, 131, S48-S49.	3.2	0
170	Expression profiling of inflammatory genes identifies differences in the acute and chronic phases of DSS induced colitis. Inflammatory Bowel Diseases, 2011, 17, S87.	1.9	0
171	Removing Formaldehydeâ€Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalinâ€Fixed Paraffinâ€Embedded Tissues. Angewandte Chemie, 2020, 132, 22773-22779.	2.0	0
172	1-Antitrypsin Gene Therapy Modulates Cellular Immunity and Efficiently Prevents Type 1 Diabetes in Nonobese Diabetic Mice. Human Gene Therapy, 2006, .	2.7	0
173	Abstract 2702: Sorafenib modulates immune responses in patients with hepatocellular carcinoma. , 2011, , .		0
174	Anti-Thymocyte Globulin (ATG) Differentially Depletes nail^ve and Memory T Cells and Permits Memory-Type Regulatory T Cells. Blood, 2012, 120, 4670-4670.	1.4	0
175	Insulin-Like Growth-Factor Axis Collectively Identifies Pre–Type 1 Diabetes. Diabetes, 2018, 67, 1967-P.	0.6	0
176	Exocrine Pancreatic Function as a Novel Biomarker in Pre-T1D. Diabetes, 2018, 67, .	0.6	0
177	1729-P: Circadian Patterns of Autoimmune Components in the Blood of Persons with Type 1 Diabetes: Implications for the Timing of Blood Sampling. Diabetes, 2019, 68, 1729-P.	0.6	0
178	1637-P: Role of mTORC1 Regulation in the T1D Organ Donor Pancreas. Diabetes, 2020, 69, 1637-P.	0.6	0