
Bret D Elderd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408213/publications.pdf Version: 2024-02-01

RDET D FLDEDD

#	Article	IF	CITATIONS
1	Looking across scales in disease ecology and evolution. American Naturalist, 2022, 199, 51-58.	2.1	2
2	Examining the Effects of Induced Plant Defenses on Spodoptera frugiperda Performance. Applied Sciences (Switzerland), 2022, 12, 3907.	2.5	2
3	A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. International Journal of Molecular Sciences, 2021, 22, 3568.	4.1	8
4	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
5	No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecology and Evolution, 2021, 11, 14231-14249.	1.9	11
6	Jasmonic acid-induced resistance to fall armyworm in soybeans: Variation among genotypes and tradeoffs with constitutive resistance. Basic and Applied Ecology, 2021, 56, 97-109.	2.7	3
7	Hitching a Ride: Examining the Ability of a Specialist Baculovirus to Translocate through Its Insect Host's Food Plant. Pathogens, 2021, 10, 1500.	2.8	1
8	Intraguild predation decreases predator fitness with potentially varying effects on pathogen transmission in a herbivore host. Oecologia, 2020, 193, 789-799.	2.0	5
9	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	7.1	108
10	A note on species richness and the variance of epidemic severity. Journal of Mathematical Biology, 2020, 80, 2055-2074.	1.9	0
11	Virulenceâ€driven tradeâ€offs in disease transmission: A metaâ€analysis*. Evolution; International Journal of Organic Evolution, 2019, 73, 636-647.	2.3	89
12	Bayesian-based survival analysis: inferring time to death in host-pathogen interactions. Environmental and Ecological Statistics, 2019, 26, 17-45.	3.5	2
13	Using insect baculoviruses to understand how population structure affects disease spread. , 2019, , 225-261.		1
14	Bottomâ€up traitâ€mediated indirect effects decrease pathogen transmission in a tritrophic system. Ecology, 2019, 100, e02551.	3.2	10
15	Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology, 2018, 99, 1031-1038.	3.2	43
16	Overdispersed Spatial Patterning of Dominant Bunchgrasses in Southeastern Pine Savannas. American Naturalist, 2018, 191, 658-667.	2.1	10
17	No appendix necessary: Fecal transplants and antibiotics can resolve Clostridium difficile infection. Journal of Theoretical Biology, 2018, 442, 139-148.	1.7	9
18	Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen. Journal of Invertebrate Pathology, 2017, 148, 34-42.	3.2	9

Bret D Elderd

#	Article	IF	CITATIONS
19	Moving forward in circles: challenges and opportunities in modelling population cycles. Ecology Letters, 2017, 20, 1074-1092.	6.4	100
20	Cannibalism and Infectious Disease: Friends or Foes?. American Naturalist, 2017, 190, 299-312.	2.1	24
21	Quantifying demographic uncertainty: Bayesian methods for integral projection models. Ecological Monographs, 2016, 86, 125-144.	5.4	36
22	The negative effects of pathogenâ€infected prey on predators: a metaâ€analysis. Oikos, 2016, 125, 1554-1560.	2.7	28
23	The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs, 2016, 86, 480-494.	5.4	38
24	Warmer temperatures increase disease transmission and outbreak intensity in a host–pathogen system. Journal of Animal Ecology, 2014, 83, 838-849.	2.8	48
25	Effects of biological control on longâ€ŧerm population dynamics: identifying unexpected outcomes. Journal of Applied Ecology, 2014, 51, 90-101.	4.0	15
26	Induced plant defenses, host–pathogen interactions, and forest insect outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14978-14983.	7.1	86
27	Population-level differences in disease transmission: A Bayesian analysis of multiple smallpox epidemics. Epidemics, 2013, 5, 146-156.	3.0	15
28	Developing Models of Disease Transmission: Insights from Ecological Studies of Insects and Their Baculoviruses. PLoS Pathogens, 2013, 9, e1003372.	4.7	31
29	Pathogen Persistence in the Environment and Insect-Baculovirus Interactions: Disease-Density Thresholds, Epidemic Burnout, and Insect Outbreaks. American Naturalist, 2012, 179, E70-E96.	2.1	59
30	Host behaviour and exposure risk in an insect–pathogen interaction. Journal of Animal Ecology, 2010, 79, 863-870.	2.8	52
31	Hydrology, habitat change and population demography: an individualâ€based model for the endangered Cape Sable seaside sparrow <i>Ammodramus maritimus mirabilis</i> . Journal of Applied Ecology, 2008, 45, 258-268.	4.0	24
32	Bias in population growth rate estimation: sparse data, partial life cycle analysis and Jensen's inequality. Oikos, 2008, 117, 1587-1593.	2.7	12
33	Hostâ€Pathogen Interactions, Insect Outbreaks, and Natural Selection for Disease Resistance. American Naturalist, 2008, 172, 829-842.	2.1	69
34	Comparing the direct and community-mediated effects of disturbance on plant population dynamics: flooding, herbivory and Mimulus guttatus. Journal of Ecology, 2006, 94, 656-669.	4.0	56
35	Disturbance-mediated trophic interactions and plant performance. Oecologia, 2006, 147, 261-271.	2.0	17
36	Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15693-15697.	7.1	88

Bret D Elderd

#	Article	IF	CITATIONS
37	The effect of density-dependent catastrophes on population persistence time. Journal of Applied Ecology, 2003, 40, 859-871.	4.0	23
38	THE IMPACT OF CHANGING FLOW REGIMES ON RIPARIAN VEGETATION AND THE RIPARIAN SPECIES MIMULUS GUTTATUS. , 2003, 13, 1610-1625.		30
39	The Scientific Foundations of Habitat Conservation Plans: a Quantitative Assessment. Conservation Biology, 2001, 15, 488-500.	4.7	45
40	Green Revolutions. Science, 1999, 283, 1265-1265.	12.6	0
41	Social constraints on the onset of incubation in a neotropical parrot: a nestbox addition experiment. Animal Behaviour, 1998, 55, 21-32.	1.9	34