Elizabeth D Laudadio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081932/publications.pdf

Version: 2024-02-01

		1040056	940533	
16	261	9	16	
papers	citations	h-index	g-index	
16	16	16	361	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Expression Patterns of Energy-Related Genes in Single Cells Uncover Key Isoforms and Enzymes That Gain Priority Under Nanoparticle-Induced Stress. ACS Nano, 2022, 16, 7197-7209.	14.6	3
2	Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nature Nanotechnology, 2022, 17, 661-669.	31.5	8
3	Dynamic aqueous transformations of lithium cobalt oxide nanoparticle induce distinct oxidative stress responses of B. subtilis. Environmental Science: Nano, 2021, 8, 1614-1627.	4.3	3
4	Reciprocal redox interactions of lithium cobalt oxide nanoparticles with nicotinamide adenine dinucleotide (NADH) and glutathione (GSH): toward a mechanistic understanding of nanoparticle-biological interactions. Environmental Science: Nano, 2021, 8, 1749-1760.	4.3	7
5	Energy Starvation in Daphnia magna from Exposure to a Lithium Cobalt Oxide Nanomaterial. Chemical Research in Toxicology, 2021, 34, 2287-2297.	3.3	9
6	Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution. Environmental Science: Nano, 2020, 7, 149-161.	4.3	12
7	Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to <i>S. oneidensis</i> MR-1 and <i>D. magna</i> Environmental Science: Nano, 2020, 7, 571-587.	4.3	18
8	Subtoxic dose of lithium cobalt oxide nanosheets impacts critical molecular pathways in trout gill epithelial cells. Environmental Science: Nano, 2020, 7, 3419-3430.	4.3	4
9	Protein Fe–S Centers as a Molecular Target of Toxicity of a Complex Transition Metal Oxide Nanomaterial with Downstream Impacts on Metabolism and Growth. Environmental Science & Technology, 2020, 54, 15257-15266.	10.0	9
10	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27854-27861.	7.1	24
11	Quantitative Mapping of Oxidative Stress Response to Lithium Cobalt Oxide Nanoparticles in Single Cells Using Multiplexed <i>in Situ</i> Gene Expression Analysis. Nano Letters, 2019, 19, 1990-1997.	9.1	25
12	Interaction of Phosphate with Lithium Cobalt Oxide Nanoparticles: A Combined Spectroscopic and Calorimetric Study. Langmuir, 2019, 35, 16640-16649.	3.5	16
13	Density, Structure, and Stability of Citrate ^{3–} and H ₂ citrate [–] on Bare and Coated Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 28393-28404.	3.1	23
14	Impact of Phosphate Adsorption on Complex Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media. Environmental Science & Eamp; Technology, 2018, 52, 10186-10195.	10.0	27
15	<i>Ab Initio</i> Atomistic Thermodynamics Study of the (001) Surface of LiCoO ₂ in a Water Environment and Implications for Reactivity under Ambient Conditions. Journal of Physical Chemistry C, 2017, 121, 5069-5080.	3.1	37
16	Lineage Tracing of Mammary Epithelial Cells Using Cell-Type-Specific Cre-Expressing Adenoviruses. Stem Cell Reports, 2014, 2, 770-779.	4.8	36