Yoann Lafon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4080811/publications.pdf

Version: 2024-02-01

933447 940533 21 289 10 16 citations h-index g-index papers 21 21 21 340 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments. Journal of Biomechanics, 2022, 134, 110987.	2.1	4
2	A Method to Use Kriging With Large Sets of Control Points to Morph Finite Element Models of the Human Body. Journal of Biomechanical Engineering, 2021, 143, .	1.3	3
3	Influence of glenohumeral joint muscle insertion on moment arms using a finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1117-1126.	1.6	5
4	Geometrical and Mechanical Characterization of the Abdominal Fold of Obese Post Mortem Human Subjects for Use in Human Body Modelling. Stapp Car Crash Journal, 2020, 64, 213-267.	1,1	0
5	Kinematics of the Normal Knee during Dynamic Activities: A Synthesis of Data from Intracortical Pins and Biplane Imaging. Applied Bionics and Biomechanics, 2017, 2017, 1-9.	1.1	11
6	Modeling of the Thigh., 2017,, 497-521.		5
7	A Markerless Method for Personalizing a Digital Human Model from a 3D Body Surface Scan. , 2015, , .		O
8	Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models. Stapp Car Crash Journal, 2015, 59, 337-57.	1.1	17
9	Multi-objective optimisation for musculoskeletal modelling: Application to a planar elbow model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1108-1113.	1.8	5
10	Effect of the muscle activation level distribution on normal stress field: a numerical study. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 164-166.	1.6	2
11	Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine, 2010, 35, 453-459.	2.0	16
12	Analysis of Idiopathic Scoliosis Progression by Using Numerical Simulation. Spine, 2010, 35, E407-E412.	2.0	31
13	In Vivo Distribution of Spinal Intervertebral Stiffness Based on Clinical Flexibility Tests. Spine, 2010, 35, 186-193.	2.0	17
14	Combination of a model-deformation method and a positional MRI to quantify the effects of posture on the anatomical structures of the trunk. Journal of Biomechanics, 2010, 43, 1269-1278.	2.1	20
15	Morphometric analysis of vertebral deformities in a porcine scoliosis model. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 41-42.	1.6	O
16	Intraoperative Three-Dimensional Correction During Rod Rotation Technique. Spine, 2009, 34, 512-519.	2.0	35
17	The effects of posture and subject-to-subject variations on the position, shape and volume of abdominal and thoracic organs. Stapp Car Crash Journal, 2009, 53, 127-54.	1.1	28
18	Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 91-92.	1.6	1

YOANN LAFON

#	Article	lF	CITATION
19	Finite element simulation of spinal deformities correction byin situcontouring technique. Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 331-337.	1.6	20
20	Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Medical and Biological Engineering and Computing, 2004, 42, 339-344.	2.8	56
21	The Effects of Posture and Subject-to-Subject Variations on the Position, Shape and Volume of Abdominal and Thoracic Organs. , 0, , .		13