Silvia Gregori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079885/publications.pdf Version: 2024-02-01

SILVIA CRECORI

#	Article	IF	CITATIONS
1	Editing TÂcell repertoire by thymic epithelial cell-directed gene transfer abrogates risk of type 1 diabetes development. Molecular Therapy - Methods and Clinical Development, 2022, 25, 508-519.	1.8	1
2	Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Current Opinion in Hematology, 2022, 29, 218-224.	1.2	5
3	InsB9-23 Gene Transfer to Hepatocyte-Based Combined Therapy Abrogates Recurrence of Type 1 Diabetes After Islet Transplantation. Diabetes, 2021, 70, 171-181.	0.3	7
4	Regulatory Cell Therapy in Organ Transplantation: Achievements and Open Questions. Frontiers in Immunology, 2021, 12, 641596.	2.2	9
5	HLA-G/LILRBs: A Cancer Immunotherapy Challenge. Trends in Cancer, 2021, 7, 389-392.	3.8	34
6	Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 8415.	1.8	30
7	Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Advances, 2021, 5, 3174-3187.	2.5	18
8	Altered Frequency and Phenotype of HLA-G-Expressing DC-10 in Type 1 Diabetes Patients at Onset and in Subjects at Risk to Develop the Disease. Frontiers in Immunology, 2021, 12, 750162.	2.2	4
9	Engineered type 1 regulatory T cells designed for clinical use kill primary pediatric acute myeloid leukemia cells. Haematologica, 2021, 106, 2588-2597.	1.7	11
10	Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10). Cellular and Molecular Immunology, 2020, 17, 95-107.	4.8	54
11	Protocol to assess the suppression of T-cell proliferation by human MDSC. Methods in Enzymology, 2020, 632, 155-192.	0.4	18
12	HLA-G Genotype/Expression/Disease Association Studies: Success, Hurdles, and Perspectives. Frontiers in Immunology, 2020, 11, 1178.	2.2	37
13	Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Frontiers in Immunology, 2020, 11, 2194.	2.2	12
14	Humanâ€engineered Tregâ€like cells suppress FOXP3â€deficient T cells but preserve adaptive immune responses <i>in vivo</i> . Clinical and Translational Immunology, 2020, 9, e1214.	1.7	30
15	Generation of Powerful Human Tolerogenic Dendritic Cells by Lentiviral-Mediated IL-10 Gene Transfer. Frontiers in Immunology, 2020, 11, 1260.	2.2	11
16	Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC. Frontiers in Immunology, 2020, 11, 608614.	2.2	11
17	Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Molecular Therapy, 2019, 27, 1215-1227.	3.7	17
18	Role of myeloid regulatory cells (MRCs) in maintaining tissue homeostasis and promoting tolerance in autoimmunity, inflammatory disease and transplantation. Cancer Immunology, Immunotherapy, 2019, 68, 661-672.	2.0	47

#	Article	IF	CITATIONS
19	Modulation of immune responses in lentiviral vector-mediated gene transfer. Cellular Immunology, 2019, 342, 103802.	1.4	49
20	Peanut-specific type 1 regulatory T cells induced inÂvitro from allergic subjects are functionally impaired. Journal of Allergy and Clinical Immunology, 2018, 141, 202-213.e8.	1.5	30
21	Impact of HLA-G polymorphism on the outcome of allogeneic hematopoietic stem cell transplantation for metastatic renal cell carcinoma. Bone Marrow Transplantation, 2018, 53, 213-218.	1.3	8
22	The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity, 2018, 49, 1004-1019.	6.6	230
23	The study of engraftment after hematopoietic stem cell transplantation: From the presence of mixed chimerism to the development of immunological tolerance. Hla, 2018, 92, 57-59.	0.4	4
24	Engineered T Regulatory Type 1 Cells for Clinical Application. Frontiers in Immunology, 2018, 9, 233.	2.2	60
25	Interleukin-10-Producing DC-10 Is a Unique Tool to Promote Tolerance Via Antigen-Specific T Regulatory Type 1 Cells. Frontiers in Immunology, 2018, 9, 682.	2.2	54
26	APVO210: A Bispecific Anti-CD86-IL-10 Fusion Protein (ADAPTIRâ,,¢) to Induce Antigen-Specific T Regulatory Type 1 Cells. Frontiers in Immunology, 2018, 9, 881.	2.2	13
27	Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nature Communications, 2018, 9, 3083.	5.8	95
28	Murine Pancreatic Islets Transplantation under the Kidney Capsule. Bio-protocol, 2018, 8, e2743.	0.2	4
29	DHRS9 Is a Stable Marker of Human Regulatory Macrophages. Transplantation, 2017, 101, 2731-2738.	0.5	58
30	HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nature Communications, 2017, 8, 498.	5.8	78
31	IL-10-Engineered Human CD4+ Tr1 Cells Eliminate Myeloid Leukemia in an HLA Class I-Dependent Mechanism. Molecular Therapy, 2017, 25, 2254-2269.	3.7	40
32	Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Frontiers in Immunology, 2017, 8, 1870.	2.2	37
33	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
34	The discovery of HLA-G-bearing extracellular vesicles: new perspectives in HLA-G biology. Annals of Translational Medicine, 2017, 5, 148-148.	0.7	4
35	Editorial: HLA-G-Mediated Immune Tolerance: Past and New Outlooks. Frontiers in Immunology, 2016, 7, 653.	2.2	5
36	Association of genetic variants in the 3′UTR of HLA-G with Recurrent Pregnancy Loss. Human Immunology, 2016, 77, 886-891.	1.2	28

#	Article	IF	CITATIONS
37	Association of HLA-G 3′ untranslated region variants with type 1 diabetes mellitus. Human Immunology, 2016, 77, 358-364.	1.2	20
38	Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ, 2016, 4, e2300.	0.9	55
39	Clinical Outlook for Type-1 and FOXP3+ T Regulatory Cell-Based Therapy. Frontiers in Immunology, 2015, 6, 593.	2.2	53
40	HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica, 2015, 100, 548-557.	1.7	69
41	HLA-G Orchestrates the Early Interaction of Human Trophoblasts with the Maternal Niche. Frontiers in Immunology, 2015, 6, 128.	2.2	62
42	Hurdles in therapy with regulatory T cells. Science Translational Medicine, 2015, 7, 304ps18.	5.8	136
43	Dendritic Cell Immune Therapy to Break or Induce Tolerance. Current Stem Cell Reports, 2015, 1, 197-205.	0.7	5
44	Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells. Frontiers in Immunology, 2014, 5, 16.	2.2	126
45	HLA-G Expression on Blasts and Tolerogenic Cells in Patients Affected by Acute Myeloid Leukemia. Journal of Immunology Research, 2014, 2014, 1-10.	0.9	24
46	Mixed chimerism evolution is associated with T regulatory type 1 (Tr1) cells in a β-thalassemic patient after haploidentical haematopoietic stem cell transplantation. Chimerism, 2014, 5, 75-79.	0.7	13
47	Tr1 Cells and the Counter-Regulation of Immunity: Natural Mechanisms and Therapeutic Applications. Current Topics in Microbiology and Immunology, 2014, 380, 39-68.	0.7	191
48	BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT. Bone Marrow Transplantation, 2014, 49, 1400-1404.	1.3	6
49	New insights into <scp>HLA</scp> mediated tolerance. Tissue Antigens, 2014, 84, 255-263.	1.0	66
50	Graft-versus-leukemia Effect of HLA-haploidentical Central-memory T-cells Expanded With Leukemic APCs and Modified With a Suicide Gene. Molecular Therapy, 2013, 21, 466-475.	3.7	23
51	Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nature Medicine, 2013, 19, 739-746.	15.2	700
52	HLA-G expressing DC-10 and CD4+ T cells accumulate in human decidua during pregnancy. Human Immunology, 2013, 74, 406-411.	1.2	102
53	Transplant Tolerance to Pancreatic Islets Is Initiated in the Graft and Sustained in the Spleen. American Journal of Transplantation, 2013, 13, 1963-1975.	2.6	44
54	Dendritic cells a double-edge sword in autoimmune responses. Frontiers in Immunology, 2012, 3, 233.	2.2	60

#	Article	IF	CITATIONS
55	Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells. Molecular Therapy, 2012, 20, 1778-1790.	3.7	78
56	HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells. Advances in Experimental Medicine and Biology, 2012, 762, 239-261.	0.8	4
57	Correlation of Der p 2 T-cell responses with clinical characteristics of children allergic to house dust mite. Annals of Allergy, Asthma and Immunology, 2012, 109, 442-447.	0.5	7
58	Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoeâ^'/â^' mice. Immunobiology, 2012, 217, 540-547.	0.8	49
59	Human tolerogenic DC-10: perspectives for clinical applications. Transplantation Research, 2012, 1, 14.	1.5	51
60	Type 1 regulatory T (Tr1) cells: from the bench to the bedside. Journal of Translational Medicine, 2012, 10, .	1.8	1
61	The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells. Frontiers in Immunology, 2012, 3, 30.	2.2	138
62	Distinctive Immunological Functions of HLA-G. , 2012, , .		3
63	Genotypes and haplotypes in the 3′ untranslated region of the HLA gene and their association with clinical outcome of hematopoietic stem cell transplantation for betaâ€ŧhalassemia. Tissue Antigens, 2012, 79, 326-332.	1.0	19
64	HIV-1-Derived Lentiviral Vectors Directly Activate Plasmacytoid Dendritic Cells, Which in Turn Induce the Maturation of Myeloid Dendritic Cells. Human Gene Therapy, 2011, 22, 177-188.	1.4	40
65	The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood, 2011, 118, 6499-6505.	0.6	88
66	Rapamycin Combined with Anti-CD45RB mAb and IL-10 or with G-CSF Induces Tolerance in a Stringent Mouse Model of Islet Transplantation. PLoS ONE, 2011, 6, e28434.	1.1	36
67	Dendritic cells in networks of immunological tolerance. Tissue Antigens, 2011, 77, 89-99.	1.0	47
68	Clinical tolerance in allogeneic hematopoietic stem cell transplantation. Immunological Reviews, 2011, 241, 145-163.	2.8	68
69	The role of HLA-G in immunity and hematopoiesis. Cellular and Molecular Life Sciences, 2011, 68, 353-368.	2.4	60
70	Functional type 1 regulatory T cells develop regardless of <i>FOXP3</i> mutations in patients with IPEX syndrome. European Journal of Immunology, 2011, 41, 1120-1131.	1.6	72
71	Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. European Journal of Immunology, 2011, 41, 1652-1662.	1.6	122
72	Molecular and functional characterization of allogantigen-specific anergic T cells suitable for cell therapy. Haematologica, 2010, 95, 2134-2143.	1.7	63

#	Article	IF	CITATIONS
73	Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10–dependent ILT4/HLA-G pathway. Blood, 2010, 116, 935-944.	0.6	481
74	Granulocyte olony stimulating factor drives the <i>in vitro</i> differentiation of human dendritic cells that induce anergy in naà ve T cells. European Journal of Immunology, 2010, 40, 3097-3106.	1.6	49
75	Induction of anergic allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. Journal of Allergy and Clinical Immunology, 2010, 125, 727-736.	1.5	51
76	Methods for In Vitro Generation of Human Type 1 Regulatory T Cells. Methods in Molecular Biology, 2010, 677, 31-46.	0.4	29
77	Immune Depletion With Cellular Mobilization Imparts Immunoregulation and Reverses Autoimmune Diabetes in Nonobese Diabetic Mice. Diabetes, 2009, 58, 2277-2284.	0.3	68
78	Role of human leukocyte antigen-G in the induction of adaptive type 1 regulatory T cells. Human Immunology, 2009, 70, 966-969.	1.2	37
79	Interleukin-10 Anergized Donor T Cell Infusion Improves Immune Reconstitution without Severe Graft-Versus-Host-Disease After Haploidentical Hematopoietic Stem Cell Transplantation Blood, 2009, 114, 45-45.	0.6	12
80	Is FOXP3 a bona fide marker for human regulatory T cells?. European Journal of Immunology, 2008, 38, 925-927.	1.6	156
81	CD4 ⁺ Tâ€regulatory cells: toward therapy for human diseases. Immunological Reviews, 2008, 223, 391-421.	2.8	213
82	Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell–mediated effects on regulatory T cells. Blood, 2008, 112, 1214-1222.	0.6	151
83	Reâ€Establishing Immune Tolerance in Type 1 Diabetes via Regulatory T Cells. Novartis Foundation Symposium, 2008, 292, 174-186.	1.2	8
84	Human Type 1 T Regulatory Cells. , 2008, , 455-471.		0
85	Safety of Arylsulfatase A Overexpression for Gene Therapy of Metachromatic Leukodystrophy. Human Gene Therapy, 2007, 18, 821-836.	1.4	47
86	Isolation, Expansion, and Characterization of Human Natural and Adaptive Regulatory T Cells. Methods in Molecular Biology, 2007, 380, 83-105.	0.4	36
87	Induction of Tolerance in Type 1 Diabetes via Both CD4+CD25+ T Regulatory Cells and T Regulatory Type 1 Cells. Diabetes, 2006, 55, 1571-1580.	0.3	151
88	Tr1 cells: From discovery to their clinical application. Seminars in Immunology, 2006, 18, 120-127.	2.7	246
89	Interleukinâ€10â€secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 2006, 212, 28-50.	2.8	1,071
90	Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes, 2006, 55, 40-9.	0.3	72

#	Article	IF	CITATIONS
91	Regulatory T cells: prospective for clinical application in hematopoietic stem cell transplantation. Current Opinion in Hematology, 2005, 12, 451-456.	1.2	18
92	Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood, 2005, 105, 1162-1169.	0.6	435
93	CD4+ regulatory T cells: Mechanisms of induction and effector function. Autoimmunity Reviews, 2005, 4, 491-496.	2.5	167
94	Exploiting the potential of regulatory T cells in the control of type 1 diabetes. , 2005, , 95-109.		0
95	An anti-CD45RO/RB monoclonal antibody modulates T cell responses via induction of apoptosis and generation of regulatory T cells. Journal of Experimental Medicine, 2005, 201, 1293-1305.	4.2	64
96	IL-10-Producing T Regulatory Type 1 Cells and Oral Tolerance. Annals of the New York Academy of Sciences, 2004, 1029, 142-153.	1.8	88
97	The role of interleukin 10 in the control of autoimmunity. Journal of Autoimmunity, 2003, 20, 269-272.	3.0	42
98	IL-12 Administration Accelerates Autoimmune Diabetes in Both Wild-Type and IFN-γ-Deficient Nonobese Diabetic Mice, Revealing Pathogenic and Protective Effects of IL-12-Induced IFN-γ. Journal of Immunology, 2003, 170, 5491-5501.	0.4	83
99	Dynamics of Pathogenic and Suppressor T Cells in Autoimmune Diabetes Development. Journal of Immunology, 2003, 171, 4040-4047.	0.4	218
100	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	3.9	89
101	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	3.9	47
102	Type 1 T regulatory cells and their relationship with CD4+CD25+ T regulatory cells. Novartis Foundation Symposium, 2003, 252, 115-27; discussion 127-31, 203-10.	1.2	19
103	A 1Â,25-Dihydroxyvitamin D3 Analog Enhances Regulatory T-Cells and Arrests Autoimmune Diabetes in NOD Mice. Diabetes, 2002, 51, 1367-1374.	0.3	446
104	Antitumorigenic and Antiinsulinogenic Effects of Calcitriol on Insulinoma Cells and Solid β-Cell Tumors. Endocrinology, 2002, 143, 4018-4030.	1.4	11
105	Cross-reactive Mycobacterial and Self hsp60 Epitope Recognition in I-Ag7 Expressing NOD, NOD-asp and Biozzi AB/H Mice. Journal of Autoimmunity, 2002, 18, 139-147.	3.0	8
106	Understanding autoimmune diabetes: insights from mouse models. Trends in Molecular Medicine, 2002, 8, 31-38.	3.5	109
107	Secretory defects induced by immunosuppressive agents on human pancreatic Î ² -cells. Acta Diabetologica, 2002, 39, 229-233.	1.2	59
108	Polymorphisms in the II12b gene affect structure and expression of IL-12 in NOD and other autoimmune-prone mouse strains. Genes and Immunity, 2002, 3, 151-157.	2.2	29

#	Article	lF	CITATIONS
109	Transplantation tolerance by 1,25-dihydroxyvitamin D3-induced costimulation blockade. Transplantation Proceedings, 2001, 33, 219-220.	0.3	8
110	Induction of transplantation tolerance by 1,25-dihydroxyvitamin D3. Transplantation Proceedings, 2001, 33, 58-59.	0.3	9
111	The Frequency of High Avidity T Cells Determines the Hierarchy of Determinant Spreading. Journal of Immunology, 2001, 166, 7144-7150.	0.4	70
112	IL-12 Administration Reveals Diabetogenic T Cells in Genetically Resistant I-Eα-Transgenic Nonobese Diabetic Mice: Resistance to Autoimmune Diabetes Is Associated with Binding of Eα-Derived Peptides to the I-Ag7 Molecule. Journal of Immunology, 2001, 167, 4104-4114.	0.4	13
113	Regulatory T Cells Induced by 1α,25-Dihydroxyvitamin D3 and Mycophenolate Mofetil Treatment Mediate Transplantation Tolerance. Journal of Immunology, 2001, 167, 1945-1953.	0.4	577
114	Early Th1 Response in Unprimed Nonobese Diabetic Mice to the Tyrosine Phosphatase-Like Insulinoma-Associated Protein 2, an Autoantigen in Type 1 Diabetes. Journal of Immunology, 2000, 165, 6748-6755.	0.4	37
115	The motif for peptide binding to the insulin-dependent diabetes mellitus-associated class II MHC molecule I-Ag7 validated by phage display library. International Immunology, 2000, 12, 493-503.	1.8	26
116	A peptide binding motif for I-Eg7, the MHC class II molecule that protects E alpha-transgenic nonobese diabetic mice from autoimmune diabetes. Journal of Immunology, 1999, 162, 6630-40.	0.4	9
117	Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. Journal of Immunology, 1999, 163, 2960-8.	0.4	60
118	A Peptide-binding Motif for I-Ag7, the Class II Major Histocompatibility Complex (MHC) Molecule of NOD and Biozzi AB/H Mice. Journal of Experimental Medicine, 1997, 185, 1013-1022.	4.2	92
119	Targeting IL-12, the Key Cytokine Driving Th1-Mediated Autoimmune Diseases. , 1997, 68, 175-197.		28
120	Deviation of pancreas-infiltrating cells to Th2 by interleukin-12 antagonist administration inhibits autoimmune diabetes. European Journal of Immunology, 1997, 27, 2330-2339.	1.6	119
121	The Role of IL-12 in the Pathogenesis of Thl Cell-Mediated Autoimmune Diseases. Annals of the New York Academy of Sciences, 1996, 795, 208-215.	1.8	23
122	Monoclonal Antibodies against Recombinant Human Growth Hormone as Probes to Study Immune Function. Hybridoma, 1996, 15, 211-217.	0.9	4
123	Isolation, Expansion, and Characterization of Human Natural and Adaptive Regulatory T Cells. , 0, , 83-106.		1