
Golap Kalita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079607/publications.pdf Version: 2024-02-01

COLAD KALITA

#	Article	IF	CITATIONS
1	Upcycling the barbeque grease into carbon nanomaterials. Carbon Trends, 2022, 6, 100143.	3.0	1
2	Crystallographic Texture and Applications of Pure Cu Formed by Shot Peening. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	2
3	Effective reduction and doping of graphene oxide films at near-room temperature by microwave-excited surface-wave plasma process. Diamond and Related Materials, 2022, 126, 109066.	3.9	5
4	Electrochemical Reactivity Investigation of Urea Oxidation Reaction in Nichrome/Nitrogen Doped Carbon Nanofibers Synthesized by CVD Method. ChemistrySelect, 2022, 7, .	1.5	2
5	In situ surface modification of bulk or nano materials by cytochrome-c for active hydrogen evolution catalysis. Materials Chemistry Frontiers, 2021, 5, 1295-1300.	5.9	2
6	Synthesis of MoS 2 Layers on GaN Using Ammonium Tetrathiomolybdate for Heterojunction Device Applications. Crystal Research and Technology, 2021, 56, 2000198.	1.3	3
7	Trifunctional Electrocatalytic Activities of Nitrogenâ€Doped Graphitic Carbon Nanofibers Synthesized by Chemical Vapor Deposition. ChemistrySelect, 2021, 6, 4867-4873.	1.5	8
8	Flexible Photocatalytic Electrode Using Graphene, Nonâ€noble Metal, and Organic Semiconductors for Hydrogen Evolution Reaction. Energy Technology, 2021, 9, 2100123.	3.8	8
9	Photo-anode surface modification using novel graphene oxide integrated with methylammonium lead iodide in organic-inorganic perovskite solar cells. Journal of Physics and Chemistry of Solids, 2021, 154, 110036.	4.0	1
10	Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. Journal of Fluorescence, 2021, 31, 1445-1459.	2.5	2
11	Temperature-dependent device properties of Î ³ -Cul and Î ² -Ga2O3 heterojunctions. SN Applied Sciences, 2021, 3, 1.	2.9	5
12	Bimetallic Au–Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)–Au(shell) over Au(core)–Pd(shell). Nanoscale Advances, 2021, 3, 5399-5416.	4.6	4
13	Influence on Electrochemical Reactivity and Synthesis of Stainless Steel/Nitrogen-Doped Carbon Nanofibers. Journal of Physical Chemistry C, 2021, 125, 25197-25206.	3.1	2
14	Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. Nanomaterials, 2021, 11, 3213.	4.1	22
15	Room-temperature graphitization in a solid-phase reaction. RSC Advances, 2020, 10, 914-922.	3.6	4
16	Growth of uniform MoS2 layers on free-standing GaN semiconductor for vertical heterojunction device application. Journal of Materials Science: Materials in Electronics, 2020, 31, 2040-2048.	2.2	11
17	Ultraviolet radiation-induced photovoltaic action in γ-Cul/β-Ga2O3 heterojunction. Materials Letters, 2020, 262, 127074.	2.6	23
18	Output density quantification of electricity generation by flowing deionized water on graphene. Applied Physics Letters, 2020, 117, .	3.3	8

#	Article	lF	CITATIONS
19	Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials, 2020, 10, 1483.	4.1	9
20	Graphitization of Galliumâ€Incorporated Carbon Nanofibers and Cones: In Situ and Ex Situ Transmission Electron Microscopy Studies. Physica Status Solidi (B): Basic Research, 2020, 257, 2000309.	1.5	3
21	One-step synthesis of spontaneously graphitized nanocarbon using cobalt-nanoparticles. SN Applied Sciences, 2020, 2, 1.	2.9	3
22	Molybdenum disulfide–graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms. Tungsten, 2020, 2, 411-422.	4.8	13
23	Structural evolution of BCN systems from graphene oxide towards electrocatalytically active atomic layers. Materials Chemistry Frontiers, 2020, 4, 2330-2338.	5.9	11
24	Temperature dependence of catalytic activity in graphene synthesis for Sn nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 12796-12803.	2.2	1
25	Influence of MoS 2 â€5ilicon Interface States on Spectral Photoresponse Characteristics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900349.	1.8	5
26	Formation of Effective Culâ€GaN Heterojunction with Excellent Ultraviolet Photoresponsive Photovoltage. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900200.	1.8	5
27	Ultraviolet light induced electrical hysteresis effect in graphene-GaN heterojunction. Applied Physics Letters, 2019, 114, .	3.3	18
28	Low temperature wafer-scale synthesis of hexagonal boron nitride by microwave assisted surface wave plasma chemical vapour deposition. AIP Advances, 2019, 9, .	1.3	18
29	Observing Charge Transfer Interaction in CuI and MoS ₂ Heterojunction for Photoresponsive Device Application. ACS Applied Electronic Materials, 2019, 1, 302-310.	4.3	13
30	Schottky junction properties of graphene with nitrogen and gallium polar freestanding GaN. , 2019, , .		0
31	The Mo catalyzed graphitization of amorphous carbon: an <i>in situ</i> TEM study. RSC Advances, 2019, 9, 34377-34381.	3.6	5
32	Effects of nitrogen-dopant bonding states on liquid-flow-induced electricity generation of graphene: A comparative study. Results in Physics, 2019, 12, 1291-1293.	4.1	4
33	Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Applied Physics Letters, 2018, 112, .	3.3	16
34	In situ TEM synthesis of carbon nanotube Y-junctions by electromigration induced soldering. Carbon, 2018, 132, 165-171.	10.3	15
35	Edge controlled growth of hexagonal boron nitride crystals on copper foil by atmospheric pressure chemical vapor deposition. CrystEngComm, 2018, 20, 550-555.	2.6	22
36	Synthesis of Freestanding WS ₂ Trees and Fibers on Au by Chemical Vapor Deposition (CVD). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700566.	1.8	4

#	Article	IF	CITATIONS
37	Development of oxide nanofiber–tipped cantilever as a substrate for crossâ€sectional transmission electron microscopy analysis. Surface and Interface Analysis, 2018, 50, 1122-1126.	1.8	2
38	Photovoltaic Action in Graphene–Ga ₂ O ₃ Heterojunction with Deepâ€Ultraviolet Irradiation. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800198.	2.4	26
39	Schottky Barrier Diode Characteristics of Graphene-GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800089.	1.8	12
40	Switching isotropic and anisotropic graphene growth in a solid source CVD system. CrystEngComm, 2018, 20, 5356-5363.	2.6	8
41	Role of Doped Nitrogen in Graphene for Flowâ€Induced Power Generation. Advanced Engineering Materials, 2018, 20, 1800387.	3.5	16
42	Photovoltaic Action With Broadband Photoresponsivity in Germanium-MoS ₂ Ultrathin Heterojunction. IEEE Transactions on Electron Devices, 2018, 65, 4434-4440.	3.0	24
43	Synthesis of MoS 2 ribbons and their branched structures by chemical vapor deposition in sulfur-enriched environment. Applied Surface Science, 2017, 409, 396-402.	6.1	26
44	Transfer free graphene growth on SiO2 substrate at 250 °C. Scientific Reports, 2017, 7, 43756.	3.3	41
45	An immobilized symmetrical bis-(NHC) palladium complex as a highly efficient and recyclable Suzuki–Miyaura catalyst in aerobic aqueous media. Dalton Transactions, 2017, 46, 539-546.	3.3	49
46	Optimization of CVD parameters for graphene synthesis through design of experiments. Physica Status Solidi (B): Basic Research, 2017, 254, 1600629.	1.5	10
47	Graphene formation at 150°C using indium as catalyst. RSC Advances, 2017, 7, 47353-47356.	3.6	9
48	Encapsulation of transition metal dichalcogenides crystals with room temperature plasma deposited carbonaceous films. RSC Advances, 2017, 7, 41136-41143.	3.6	2
49	Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction. Applied Physics Letters, 2017, 111, .	3.3	27
50	Visualization of silver-decorated poly (DL-lactide-co-glycolide) nanoparticles and their efficacy against Staphylococcus epidermidis. Materials Science and Engineering C, 2017, 72, 143-149.	7.3	26
51	Influence of copper foil polycrystalline structure on graphene anisotropic etching. Applied Surface Science, 2017, 393, 428-433.	6.1	10
52	Room temperature fabrication of 1D carbon-copper composite nanostructures directly on Cu substrate and their field emission properties. AIP Advances, 2016, 6, .	1.3	5
53	An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor. Applied Physics Letters, 2016, 108, .	3.3	19

In situ TEM visualization of Pd assisted graphene growth in nanoscale. , 2016, , .

1

#	Article	IF	CITATIONS
55	Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition. Journal of Materials Science, 2016, 51, 7220-7228.	3.7	21
56	Morphology-Controlled Synthesis of Hexagonal Boron Nitride Crystals by Chemical Vapor Deposition. Crystal Growth and Design, 2016, 16, 6440-6445.	3.0	15
57	CuNi binary alloy catalyst for growth of nitrogenâ€doped graphene by low pressure chemical vapor deposition. Physica Status Solidi - Rapid Research Letters, 2016, 10, 749-752.	2.4	5
58	Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil. Nanotechnology, 2016, 27, 365602.	2.6	9
59	In situ fabrication of graphene from a copper–carbon nanoneedle and its electrical properties. RSC Advances, 2016, 6, 82459-82466.	3.6	5
60	Synthesis of uniform monolayer graphene on re-solidified copper from waste chicken fat by low pressure chemical vapor deposition. Materials Research Bulletin, 2016, 83, 573-580.	5.2	25
61	Bonding state and defects of nitrogen-doped graphene in oxygen reduction reaction. Chemical Physics Letters, 2016, 665, 117-120.	2.6	26
62	Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F848-F855.	2.9	76
63	Structure of nitrogen-doped graphene synthesized by combination of imidazole and melamine solid precursors. Materials Letters, 2016, 177, 89-93.	2.6	17
64	Fabrication of particular structures of hexagonal boron nitride and boron–carbon–nitrogen layers by anisotropic etching. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 13-19.	2.7	3
65	Ambiguity in determining H 2 adsorption capacity of carbonÂfiberÂby pressure technique. International Journal of Hydrogen Energy, 2016, 41, 2671-2676.	7.1	4
66	Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition. Carbon, 2016, 96, 448-453.	10.3	45
67	Effect of annealing in hydrogen atmosphere on ZnO films for field emission display. IOP Conference Series: Materials Science and Engineering, 2015, 99, 012030.	0.6	5
68	Bifunctional Electrocatalytic Activity of Boronâ€Đoped Graphene Derived from Boron Carbide. Advanced Energy Materials, 2015, 5, 1500658.	19.5	141
69	Roomâ€ŧemperature growth of ionâ€induced Si―and Geâ€incorporated carbon nanofibers. Physica Status Solidi (B): Basic Research, 2015, 252, 1345-1349.	1.5	10
70	Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD. Materials Letters, 2015, 156, 156-160.	2.6	41
71	Visualization of graphene formation in nanoscale by in situ transmission electron microscopy: A Review. , 2015, , .		0
72	Fabrication of transparent and flexible carbon-doped ZnO field emission display on plastic substrate. Physica Status Solidi - Rapid Research Letters, 2015, 9, 145-148.	2.4	15

#	Article	IF	CITATIONS
73	Electron microscopy of Staphylococcus epidermidis fibril and biofilm formation using image-enhancing ionic liquid. Analytical and Bioanalytical Chemistry, 2015, 407, 1607-1613.	3.7	18
74	Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Scientific Reports, 2015, 5, 10426.	3.3	51
75	Structure dependent hydrogen induced etching features of graphene crystals. Applied Physics Letters, 2015, 106, .	3.3	14
76	Polymer-free graphene transfer on moldable cellulose acetate based paper by hot press technique. Surface and Coatings Technology, 2015, 275, 369-373.	4.8	8
77	Formation of graphene nanoribbons and Y-junctions by hydrogen induced anisotropic etching. RSC Advances, 2015, 5, 35297-35301.	3.6	16
78	Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device. Applied Surface Science, 2015, 356, 674-678.	6.1	17
79	In situ transmission electron microscopy of Ag-incorporated carbon nanofibers: the effect of Ag nanoparticle size on graphene formation. RSC Advances, 2015, 5, 5647-5651.	3.6	9
80	Non-blinking dendritic crystals from C-dot solution. Carbon Letters, 2015, 16, 211-214.	5.9	6
81	Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application. Journal of Applied Physics, 2014, 116, .	2.5	44
82	Synthesis of Carbon Fibers with Branched Nanographene Sheets for Electrochemical Double Layer Capacitor Application. Journal of Nanoscience and Nanotechnology, 2014, 14, 2614-2619.	0.9	2
83	Blend of Silicon Nanostructures and Conducting Polymers for Solar Cells. , 2014, , 495-508.		3
84	Field emission properties of chemical vapor deposited individual graphene. Applied Physics Letters, 2014, 104, .	3.3	16
85	Controlling the direct growth of graphene on an insulating substrate by the solid phase reaction of a polymer layer. RSC Advances, 2014, 4, 38450-38454.	3.6	10
86	Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 2014, 72, 66-73.	10.3	136
87	Low temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier. Corrosion Science, 2014, 78, 183-187.	6.6	60
88	Highly transparent and conducting C:ZnO thin film for field emission displays. RSC Advances, 2014, 4, 64763-64770.	3.6	31
89	Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition. Applied Physics Letters, 2014, 105, 133103.	3.3	9
90	On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Advances, 2014, 4, 38689-38697.	3.6	148

#	Article	IF	CITATIONS
91	Photoresponsivity of silver nanoparticles decorated graphene–silicon Schottky junction. RSC Advances, 2014, 4, 26866-26871.	3.6	27
92	Transformation of chemical vapor deposited individual graphene crystal with oxidation of copper substrate. Carbon, 2014, 80, 504-512.	10.3	16
93	Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source. RSC Advances, 2014, 4, 13355.	3.6	13
94	Synthesis of transfer-free graphene by solid phase reaction process in presence of a carbon diffusion barrier. Materials Letters, 2014, 129, 76-79.	2.6	8
95	Direct observation of structural change in Au-incorporated carbon nanofibers during field emission process. Carbon, 2014, 75, 277-280.	10.3	16
96	Visualizing copper assisted graphene growth in nanoscale. Scientific Reports, 2014, 4, 7563.	3.3	16
97	Fabrication and characteristics of solutionâ€processed graphene oxide–silicon heterojunction. Physica Status Solidi - Rapid Research Letters, 2013, 7, 340-343.	2.4	12
98	Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. Journal of Materials Science, 2013, 48, 7036-7041.	3.7	17
99	Influence of gas composition on the formation of graphene domain synthesized from camphor. Materials Letters, 2013, 93, 258-262.	2.6	35
100	A photoinduced charge transfer composite of graphene oxide and ferrocene. Physical Chemistry Chemical Physics, 2013, 15, 1271-1274.	2.8	37
101	Synthesis of continuous graphene on metal foil for flexible transparent electrode application. , 2013, ,		0
102	Formation of graphene nano-particle by means of pulsed discharge to ethanol. Journal of Applied Physics, 2013, 113, 114304.	2.5	22
103	Field emission characteristics of pristine and N-doped graphene measured by in-situ transmission electron microscopy. Journal of Applied Physics, 2013, 113, 214311.	2.5	23
104	Room-Temperature Fabrication of Au- and Ag-Incorporated Carbon Nanofibers by Ion Irradiation and Their Field Emission Properties. Japanese Journal of Applied Physics, 2013, 52, 11NL01.	1.5	9
105	Fabrication of Nanostructured ZnO Films for Transparent Field Emission Displays. Japanese Journal of Applied Physics, 2013, 52, 11NJ07.	1.5	8
106	Conducting polymer based hybrid structure as transparent and flexible field electron emitter. Physica Status Solidi - Rapid Research Letters, 2013, 7, 489-492.	2.4	2
107	Chemical vapor deposition of graphene on silver foil as a tarnishâ€resistant coating. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1076-1079.	2.4	27
108	Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction. Journal Physics D: Applied Physics, 2013, 46, 455103.	2.8	28

#	Article	IF	CITATIONS
109	Large-area CVD graphene as transparent electrode for efficient organic solar cells. , 2012, , .		4
110	Structural and Electrical Properties of Ozone Irradiated Carbon Nanotube Yarns and Sheets. Materials Express, 2012, 2, 357-362.	0.5	14
111	Synthesis of transfer-free graphene on an insulating substrate using a solid phase reaction. Nanoscale, 2012, 4, 7791.	5.6	24
112	Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2510-2513.	1.8	17
113	Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Advances, 2012, 2, 3225.	3.6	45
114	Formation of Graphene-Containing Porous Carbon Film for Electric Double-Layer Capacitor by Pulsed Plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 045103.	1.5	3
115	High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique. Nanoscale Research Letters, 2012, 7, 448.	5.7	5
116	Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application. RSC Advances, 2012, 2, 2815.	3.6	80
117	<i>In Situ</i> TEM Observation of Fe-Included Carbon Nanofiber: Evolution of Structural and Electrical Properties in Field Emission Process. ACS Nano, 2012, 6, 9567-9573.	14.6	31
118	Formation of Graphene-Containing Porous Carbon Film for Electric Double-Layer Capacitor by Pulsed Plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 045103.	1.5	4
119	lodine doping in solid precursor-based CVD growth graphene film. Journal of Materials Chemistry, 2011, 21, 15209.	6.7	113
120	Structural Analysis and Direct Imaging of Rotational Stacking Faults in Few-Layer Graphene Synthesized from Solid Botanical Precursor. Japanese Journal of Applied Physics, 2011, 50, 070106.	1.5	4
121	Femtosecond laser induced micropatterning of graphene film. Materials Letters, 2011, 65, 1569-1572.	2.6	71
122	Monolayer graphene from a green solid precursor. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1490-1493.	2.7	41
123	Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers. Carbon Letters, 2011, 12, 39-43.	5.9	11
124	Structural Analysis and Direct Imaging of Rotational Stacking Faults in Few-Layer Graphene Synthesized from Solid Botanical Precursor. Japanese Journal of Applied Physics, 2011, 50, 070106.	1.5	2
125	Poly(3-octylthiophene)/Fullerene Heterojunction Solar Cell Incorporating Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3844-3848.	0.9	3
126	Nanostructured morphology of P3HT:PCBM bulk heterojunction solar cells. Solid-State Electronics, 2010, 54, 447-451.	1.4	26

#	Article	IF	CITATIONS
127	Few layers of graphene as transparent electrode from botanical derivative camphor. Materials Letters, 2010, 64, 2180-2183.	2.6	57
128	Efficient bulk heterojunction solar cells incorporating carbon nanotubes and with electron selective interlayers. , 2010, , .		0
129	Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20, 9713.	6.7	78
130	Functionalization of multi-walled carbon nanotubes (MWCNTs) with nitrogen plasma for photovoltaic device application. Current Applied Physics, 2009, 9, 346-351.	2.4	43
131	Effect of liquid nitrogen treatment on the structural, electrical and optical properties of indium tin oxide coated glass substrate. Chemical Physics Letters, 2009, 481, 68-72.	2.6	2
132	Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. Journal Physics D: Applied Physics, 2009, 42, 115104.	2.8	63
133	Application of carbon nanotubes in hybrid and organic solar cells. , 2009, , .		1
134	Enhancement of fluorine doped amorphous carbon thin films from microwave surface wave plasma activated above room temperature. Diamond and Related Materials, 2009, 18, 465-468.	3.9	3
135	Fluorination of multi-walled carbon nanotubes (MWNTs) via surface wave microwave (SW-MW) plasma treatment. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 299-303.	2.7	34
136	Cutting carbon nanotubes for solar cell application. Applied Physics Letters, 2008, 92, 123508.	3.3	31
137	Effect of substrate bias voltage on the properties of diamond-like carbon thin films deposited by microwave surface wave plasma CVD. Diamond and Related Materials, 2008, 17, 696-699.	3.9	8
138	Preparation of diamond like carbon thin films above room temperature and their properties. Diamond and Related Materials, 2008, 17, 680-683.	3.9	9
139	Fullerene (C60) decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application. Applied Physics Letters, 2008, 92, 063508.	3.3	43
140	Fluorine incorporated amorphous carbon thin films prepared by Surface Wave Microwave Plasma CVD. Diamond and Related Materials, 2008, 17, 1697-1701.	3.9	14
141	Optical band gap of nitrogenated amorphous carbon thin films synthesized by microwave surface wave plasma CVD. Diamond and Related Materials, 2008, 17, 1666-1668.	3.9	27
142	Taguchi optimization of device parameters for fullerene and Poly (3-octylthiophene) based heterojunction photovoltaic devices. Diamond and Related Materials, 2008, 17, 799-803.	3.9	6
143	Carbon nano materials (CNMs) for photovoltaic device application. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
144	Compositional and structural variations of nitrogen doped amorphous carbon films grown by surface-wave mode microwave plasma CVD. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0

#	Article	IF	CITATIONS
145	Double-Walled Carbon Nanotubes-Incorporated Donor–Acceptor-Type Organic Photovoltaic Devices Using Poly(3-octylthiophene) and C60. Japanese Journal of Applied Physics, 2008, 47, 1219-1222.	1.5	11
146	Some aspects of nitrogen doped amorphous carbon thin films. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	2
147	Carbon Thin Films from Plant-Derived Precursors. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 467-471.	0.6	5
148	Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications. , 0, , .		9