Christina Zeitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4076174/publications.pdf Version: 2024-02-01

CHDISTINA 7FITZ

#	Article	IF	CITATIONS
1	The research output of rod-cone dystrophy genetics. Orphanet Journal of Rare Diseases, 2022, 17, 175.	2.7	2
2	Retinal Phenotype of Patients with <i>CLRN1</i> -Associated Usher 3A Syndrome in French Light4Deaf Cohort. , 2022, 63, 25.		0
3	Large Benefit from Simple Things: High-Dose Vitamin A Improves RBP4-Related Retinal Dystrophy. International Journal of Molecular Sciences, 2022, 23, 6590.	4.1	4
4	Retrospective Natural History Study of RPGR-Related Cone- and Cone-Rod Dystrophies While Expanding the Mutation Spectrum of the Disease. International Journal of Molecular Sciences, 2022, 23, 7189.	4.1	7
5	<scp> <i>WDR34</i></scp> , a candidate gene for nonâ€syndromic rodâ€cone dystrophy. Clinical Genetics, 2021, 99, 298-302.	2.0	7
6	The genetics of rod-cone dystrophy in Arab countries: a systematic review. European Journal of Human Genetics, 2021, 29, 897-910.	2.8	10
7	New variants and in silico analyses in GRK1 associated Oguchi disease. Human Mutation, 2021, 42, 164-176.	2.5	7
8	Congenital Stationary Night Blindness (CSNB): An Inherited Retinal Disorder Where Clear Correlations Can Be Made. Essentials in Ophthalmology, 2021, , 139-152.	0.1	1
9	Near-infrared fundus autofluorescence alterations correlate with swept-source optical coherence tomography angiography findings in patients with retinitis pigmentosa. Scientific Reports, 2021, 11, 3180.	3.3	7
10	Optic Atrophy and Inner Retinal Thinning in CACNA1F-Related Congenital Stationary Night Blindness. Genes, 2021, 12, 330.	2.4	6
11	<i>CHM</i> mutation spectrum and disease: An update at the time of human therapeutic trials. Human Mutation, 2021, 42, 323-341.	2.5	8
12	Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. , 2021, 62, 13.		42
13	Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to <i>CLN3</i> Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmology, 2021, 139, 278.	2.5	21
14	The need for widely available genomic testing in rare eye diseases: an ERN-EYE position statement. Orphanet Journal of Rare Diseases, 2021, 16, 142.	2.7	25
15	Congenital stationary night blindness in a patient with mild learning disability due to a compound heterozygous microdeletion of 15q13 and a missense mutation in <i>TRPM1</i> . Ophthalmic Genetics, 2021, 42, 296-299.	1.2	1
16	Restoration of mGluR6 Localization Following AAV-Mediated Delivery in a Mouse Model of Congenital Stationary Night Blindness. , 2021, 62, 24.		10
17	A New Mouse Model for Complete Congenital Stationary Night Blindness Due to Gpr179 Deficiency. International Journal of Molecular Sciences, 2021, 22, 4424.	4.1	3
18	DEEP PHENOTYPING AND FURTHER INSIGHTS INTO ITM2B-RELATED RETINAL DYSTROPHY. Retina, 2021, 41, 872-881.	1.7	2

#	Article	IF	CITATIONS
19	Management of a case of Enhanced S-cone syndrome with massive foveoschisis treated with pars plana vitrectomy with silicone oil tamponade. Ophthalmic Genetics, 2021, 42, 615-618.	1.2	3
20	<i>CNGB1</i> â€related rodâ€cone dystrophy: A mutation review and update. Human Mutation, 2021, 42, 641-666.	2.5	16
21	Novel TTLL5 Variants Associated with Cone-Rod Dystrophy and Early-Onset Severe Retinal Dystrophy. International Journal of Molecular Sciences, 2021, 22, 6410.	4.1	9
22	Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. International Journal of Molecular Sciences, 2021, 22, 7875.	4.1	3
23	Cystoid maculopathy is a frequent feature of Cohen syndrome-associated retinopathy. Scientific Reports, 2021, 11, 16412.	3.3	7
24	First identification of ITM2B interactome in the human retina. Scientific Reports, 2021, 11, 17210.	3.3	3
25	Substantial restoration of night vision in adult mice with congenital stationary night blindness. Molecular Therapy - Methods and Clinical Development, 2021, 22, 15-25.	4.1	10
26	Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. American Journal of Ophthalmology, 2021, 230, 12-47.	3.3	19
27	Challenges of Phenotype-Genotype Correlations in Rare Diseases—Reply. JAMA Ophthalmology, 2021, 139, 1323.	2.5	1
28	A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Human Mutation, 2020, 41, 140-149.	2.5	75
29	PHENOTYPIC CHARACTERISTICS OF ROD–CONE DYSTROPHY ASSOCIATED WITH MYO7A MUTATIONS IN A LARGE FRENCH COHORT. Retina, 2020, 40, 1603-1615.	1.7	16
30	Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23914-23924.	7.1	20
31	Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. , 2020, 61, 36.		17
32	Impact of the COVID-19 lockdown on basic science research in ophthalmology: the experience of a highly specialized research facility in France. Eye, 2020, 34, 1187-1188.	2.1	15
33	Loss of Function of RIMS2 Causes a Syndromic Congenital Cone-Rod Synaptic Disease with Neurodevelopmental and Pancreatic Involvement. American Journal of Human Genetics, 2020, 106, 859-871.	6.2	22
34	Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. American Journal of Ophthalmology, 2020, 216, 219-225.	3.3	20
35	Identification and characterization of novel TRPM1 autoantibodies from serum of patients with melanoma-associated retinopathy. PLoS ONE, 2020, 15, e0231750.	2.5	12
36	Spectrum of Disease Severity in Patients With X-Linked Retinitis Pigmentosa Due to <i>RPGR</i> Mutations. , 2020, 61, 36.		17

#	Article	IF	CITATIONS
37	Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. British Journal of Ophthalmology, 2019, 103, 390-397.	3.9	45
38	Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 12-Month Period. JAMA Ophthalmology, 2019, 137, 1134.	2.5	57
39	Macular sensitivity in patients with congenital stationary night-blindness. British Journal of Ophthalmology, 2019, 103, 1507-1510.	3.9	2
40	Prevalence of ABCA4 Deep-Intronic Variants and Related Phenotype in An Unsolved "One-Hit―Cohort with Stargardt Disease. International Journal of Molecular Sciences, 2019, 20, 5053.	4.1	26
41	Outer Retinal Alterations Associated With Visual Outcomes in Best Vitelliform Macular Dystrophy. American Journal of Ophthalmology, 2019, 208, 429-437.	3.3	14
42	An Ashkenazi Jewish founder mutation in <i>CACNA1F</i> causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genetics, 2019, 40, 443-448.	1.2	8
43	TRPM1 Mutations are the Most Common Cause of Autosomal Recessive Congenital Stationary Night Blindness (CSNB) in the Palestinian and Israeli Populations. Scientific Reports, 2019, 9, 12047.	3.3	14
44	Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. International Journal of Molecular Sciences, 2019, 20, 4854.	4.1	20
45	Identification of a novel <i>GRM6</i> mutation in a previously described consanguineous family with complete congenital stationary night blindness. Ophthalmic Genetics, 2019, 40, 182-184.	1.2	2
46	Longitudinal Clinical Follow-up and Genetic Spectrum of Patients With Rod-Cone Dystrophy Associated With Mutations in <i>PDE6A</i> and <i>PDE6B</i> . JAMA Ophthalmology, 2019, 137, 669.	2.5	32
47	A Workshop on Measuring the Progression of Atrophy Secondary to Stargardt Disease in the ProgStar Studies: Findings and Lessons Learned. Translational Vision Science and Technology, 2019, 8, 16.	2.2	27
48	Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of <i>CACNA1F</i> â€mediated inherited retinal disorders. Human Mutation, 2019, 40, 765-787.	2.5	24
49	Disinhibition of intrinsic photosensitive retinal ganglion cells in patients with X-linked congenital stationary night blindness. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1207-1215.	1.9	2
50	Novel Missense Mutations in BEST1 Are Associated with Bestrophinopathies in Lebanese Patients. Genes, 2019, 10, 151.	2.4	7
51	Generation of human induced pluripotent stem cell lines from a patient with ITM2B-related retinal dystrophy and a non mutated brother. Stem Cell Research, 2019, 41, 101625.	0.7	4
52	Next Generation Sequencing Identifies Five Novel Mutations in Lebanese Patients with Bardet–Biedl and Usher Syndromes. Genes, 2019, 10, 1047.	2.4	6
53	Peripapillary Sparing With Near Infrared Autofluorescence Correlates With Electroretinographic Findings in Patients With Stargardt Disease. , 2019, 60, 4951.		4
54	A novel missense mutation of <i>GJA8</i> causes congenital cataract in a large Mauritanian family. European Journal of Ophthalmology, 2019, 29, 621-628.	1.3	7

#	Article	lF	CITATIONS
55	Whole exome sequencing resolves complex phenotype and identifies <i>CC2D2A</i> mutations underlying nonâ€syndromic rodâ€cone dystrophy. Clinical Genetics, 2019, 95, 329-333.	2.0	19
56	AUTOSOMAL DOMINANT VITREORETINOCHOROIDOPATHY. Retina, 2019, 39, 867-878.	1.7	6
57	Mutation profile of glaucoma candidate genes in Mauritanian families with primary congenital glaucoma. Molecular Vision, 2019, 25, 373-381.	1.1	3
58	A novel nonsense variant in <i>REEP6</i> is involved in a sporadic rod one dystrophy case. Clinical Genetics, 2018, 93, 707-711.	2.0	7
59	<i>MERTK</i> mutation update in inherited retinal diseases. Human Mutation, 2018, 39, 887-913.	2.5	41
60	Retinal findings in a patient of French ancestry with CABP4-related retinal disease. Documenta Ophthalmologica, 2018, 136, 135-143.	2.2	4
61	A Novel Heterozygous Missense Mutation in <i>GNAT1</i> Leads to Autosomal Dominant Riggs Type of Congenital Stationary Night Blindness. BioMed Research International, 2018, 2018, 1-10.	1.9	8
62	Expanding the Mutation Spectrum in ABCA4: Sixty Novel Disease Causing Variants and Their Associated Phenotype in a Large French Stargardt Cohort. International Journal of Molecular Sciences, 2018, 19, 2196.	4.1	22
63	Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association. Documenta Ophthalmologica, 2018, 137, 57-62.	2.2	11
64	Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype–Phenotype Correlations, and Inheritance Models. Genes, 2018, 9, 215.	2.4	58
65	Phenotypic Characteristics of a French Cohort of Patients with X-Linked Retinoschisis. Ophthalmology, 2018, 125, 1587-1596.	5.2	25
66	Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12. American Journal of Ophthalmology, 2018, 193, 54-61.	3.3	24
67	<i>ARL2BP</i> mutations account for 0.1% of autosomal recessive rod one dystrophies with the report of a novel splice variant. Clinical Genetics, 2017, 92, 109-111.	2.0	7
68	Generation of an induced pluripotent stem cell (iPSC) line from a patient with autosomal dominant retinitis pigmentosa due to a mutation in the NR2E3 gene. Stem Cell Research, 2017, 24, 1-4.	0.7	5
69	A novel duplication of PRMD13 causes North Carolina macular dystrophy: overexpression of PRDM13 orthologue in drosophila eye reproduces the human phenotype. Human Molecular Genetics, 2017, 26, 4367-4374.	2.9	24
70	Further Insights into the Ciliary Gene and Protein KIZ and Its Murine Ortholog PLK1S1 Mutated in Rod-Cone Dystrophy. Genes, 2017, 8, 277.	2.4	7
71	LRIT3 Differentially Affects Connectivity and Synaptic Transmission of Cones to ON- and OFF-Bipolar Cells. , 2017, 58, 1768.		25
72	Novel splice-site mutation in TTLL5 causes cone dystrophy in a consanguineous family. Molecular Vision, 2017, 23, 131-139.	1.1	9

#	Article	IF	CITATIONS
73	Nextâ€generation sequencing confirms the implication of <i><scp>SLC24A1</scp></i> in autosomalâ€recessive congenital stationary night blindness. Clinical Genetics, 2016, 89, 690-699.	2.0	16
74	Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology, 2016, 123, 1887-1897.	5.2	59
75	Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness. American Journal of Human Genetics, 2016, 98, 1011-1019.	6.2	49
76	A new autosomal dominant eye and lung syndrome linked to mutations in TIMP3 gene. Scientific Reports, 2016, 6, 32544.	3.3	17
77	The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies. Ophthalmology, 2016, 123, 817-828.	5.2	126
78	Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy. PLoS ONE, 2016, 11, e0168271.	2.5	15
79	Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation. Orphanet Journal of Rare Diseases, 2015, 10, 85.	2.7	79
80	<scp>LRIT</scp> 3 is essential to localize <scp>TRPM</scp> 1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation. European Journal of Neuroscience, 2015, 42, 1966-1975.	2.6	48
81	Targeted Next Generation Sequencing Identifies Novel Mutations in <i>RP1</i> as a Relatively Common Cause of Autosomal Recessive Rod-Cone Dystrophy. BioMed Research International, 2015, 2015, 1-11.	1.9	25
82	Cone Dystrophy in Patient with Homozygous <i>RP1L1</i> Mutation. BioMed Research International, 2015, 2015, 1-13.	1.9	16
83	High Prevalence of PRPH2 in Autosomal Dominant Retinitis Pigmentosa in France and Characterization of Biochemical and Clinical Features. American Journal of Ophthalmology, 2015, 159, 302-314.	3.3	29
84	Congenital stationary night blindness: An analysis and update of genotype–phenotype correlations and pathogenic mechanisms. Progress in Retinal and Eye Research, 2015, 45, 58-110.	15.5	269
85	Aripiprazole-induced chorioretinopathy: multimodal imaging and electrophysiological features. Documenta Ophthalmologica, 2015, 131, 35-41.	2.2	19
86	Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome. Human Molecular Genetics, 2015, 24, 230-242.	2.9	136
87	Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model. PLoS ONE, 2015, 10, e0127319.	2.5	51
88	Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2. Human Molecular Genetics, 2014, 23, 1538-1550.	2.9	38
89	The familial dementia gene revisited: a missense mutation revealed by whole-exome sequencing identifies ITM2B as a candidate gene underlying a novel autosomal dominant retinal dystrophy in a large family. Human Molecular Genetics, 2014, 23, 491-501.	2.9	29
90	Whole-Exome Sequencing Identifies KIZ as a Ciliary Gene Associated with Autosomal-Recessive Rod-Cone Dystrophy. American Journal of Human Genetics, 2014, 94, 625-633.	6.2	52

#	Article	IF	CITATIONS
91	Spectrum of Cav1.4 dysfunction in congenital stationary night blindness type 2. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2053-2065.	2.6	26
92	Lrit3 Deficient Mouse (nob6): A Novel Model of Complete Congenital Stationary Night Blindness (cCSNB). PLoS ONE, 2014, 9, e90342.	2.5	50
93	Gene therapy for Stargardt disease. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	0
94	Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort. Molecular Vision, 2014, 20, 341-51.	1.1	14
95	Arrayed Primer Extension Microarray for the Analysis of Genes Associated with Congenital Stationary Night Blindness. Methods in Molecular Biology, 2013, 963, 319-326.	0.9	4
96	Mutations in IMPG1 Cause Vitelliform Macular Dystrophies. American Journal of Human Genetics, 2013, 93, 571-578.	6.2	71
97	Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2013, 92, 67-75.	6.2	120
98	Relative Frequencies of Inherited Retinal Dystrophies and Optic Neuropathies in Southern France: Assessment of 21-year Data Management. Ophthalmic Epidemiology, 2013, 20, 13-25.	1.7	44
99	Further Insights Into CPR179: Expression, Localization, and Associated Pathogenic Mechanisms Leading to Complete Congenital Stationary Night Blindness. , 2013, 54, 8041.		20
100	Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein. International Journal of Molecular Sciences, 2013, 14, 15121-15140.	4.1	14
101	Detailed investigations of proximal tubular function in Imerslund-GrÃ s beck syndrome. BMC Medical Genetics, 2013, 14, 111.	2.1	31
102	A cone-rod dystrophy patient with a homozygous RP1L1 mutation. Acta Ophthalmologica, 2013, 91, 0-0.	1.1	0
103	NMNAT1 mutations cause Leber congenital amaurosis. Nature Genetics, 2012, 44, 1040-1045.	21.4	171
104	Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 91, 209.	6.2	0
105	Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet Journal of Rare Diseases, 2012, 7, 8.	2.7	144
106	Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 90, 321-330.	6.2	121
107	RP1 and autosomal dominant rod-cone dystrophy: Novel mutations, a review of published variants, and genotype-phenotype correlation. Human Mutation, 2012, 33, 73-80.	2.5	33
108	<i>CRB1</i> mutations in inherited retinal dystrophies. Human Mutation, 2012, 33, 306-315.	2.5	153

#	Article	IF	CITATIONS
109	Novel <i>C2orf71</i> mutations account for â ¹ /41% of cases in a large French arRP cohort. Human Mutation, 2011, 32, E2091-103.	2.5	29
110	Copy-Number Variations in <i>EYS:</i> A Significant Event in the Appearance of arRP. , 2011, 52, 5625.		40
111	A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family. Molecular Vision, 2011, 17, 1598-606.	1.1	17
112	A Mutation in SLC24A1 Implicated in Autosomal-Recessive Congenital Stationary Night Blindness. American Journal of Human Genetics, 2010, 87, 523-531.	6.2	67
113	EYS is a major gene for rod-cone dystrophies in France. Human Mutation, 2010, 31, E1406-E1435.	2.5	86
114	Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa. Human Mutation, 2010, 31, E1772-E1800.	2.5	69
115	Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC Medical Genetics, 2010, 11, 145.	2.1	49
116	Spectrum of Rhodopsin Mutations in French Autosomal Dominant Rod–Cone Dystrophy Patients. , 2010, 51, 3687.		45
117	An Unusual Retinal Phenotype Associated With a Novel Mutation in RHO. JAMA Ophthalmology, 2010, 128, 1036.	2.4	24
118	Genotyping Microarray for CSNB-Associated Genes. , 2009, 50, 5919.		41
119	TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2009, 85, 720-729.	6.2	207
120	A common NYX mutation in Flemish patients with X linked CSNB. British Journal of Ophthalmology, 2009, 93, 692-696.	3.9	18
121	Mutation of Solute Carrier SLC16A12 Associates with a Syndrome Combining Juvenile Cataract with Microcornea and Renal Glucosuria. American Journal of Human Genetics, 2008, 82, 772-779.	6.2	66
122	Novel mutations in the folliculin gene associated with spontaneous pneumothorax. European Respiratory Journal, 2008, 32, 1316-1320.	6.7	50
123	Identification and Functional Characterization of a Novel Rhodopsin Mutation Associated with Autosomal Dominant CSNB. , 2008, 49, 4105.		52
124	Molecular genetics and protein function involved in nocturnal vision. Expert Review of Ophthalmology, 2007, 2, 467-485.	0.6	42
125	Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Human Mutation, 2007, 28, 771-780.	2.5	60
126	Identification and characterization of a novel RPGR isoform in human retina. Human Mutation, 2007, 28, 797-807.	2.5	47

#	Article	IF	CITATIONS
127	Mutations in CABP4, the Gene Encoding the Ca2+-Binding Protein 4, Cause Autosomal Recessive Night Blindness. American Journal of Human Genetics, 2006, 79, 657-667.	6.2	153
128	Mutation in the Auxiliary Calcium-Channel Subunit CACNA2D4 Causes Autosomal Recessive Cone Dystrophy. American Journal of Human Genetics, 2006, 79, 973-977.	6.2	135
129	Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. European Journal of Neuroscience, 2006, 24, 1664-1674.	2.6	27
130	Mutations inGRM6Cause Autosomal Recessive Congenital Stationary Night Blindness with a Distinctive Scotopic 15-Hz Flicker Electroretinogram. , 2005, 46, 4328.		136
131	Novel mutations in CACNA1F and NYX in Dutch families with X-linked congenital stationary night blindness. Molecular Vision, 2005, 11, 179-83.	1.1	26
132	NYX(Nyctalopin on Chromosome X), the Gene Mutated in Congenital Stationary Night Blindness, Encodes a Cell Surface Protein. , 2003, 44, 4184.		31
133	Isolation of the Mouse Nyctalopin GeneNyxand Expression Studies in Mouse and Rat Retina. , 2003, 44, 2260.		26
134	DNA sequence comparison of human and mouse retinitis pigmentosa GTPase regulator (RPGR) identifies tissue-specific exons and putative regulatory elements. Human Genetics, 2001, 109, 271-278.	3.8	16
135	The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nature Genetics, 2000, 26, 324-327.	21.4	231
136	cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Developmental Biology, 2000, 222, 158-169.	2.0	46