Rachel M Mcquade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4076156/publications.pdf

Version: 2024-02-01

471509 434195 1,027 32 17 31 citations h-index g-index papers 33 33 33 1529 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Gastrointestinal Dysfunction in Parkinson's Disease: Current and Potential Therapeutics. Journal of Personalized Medicine, 2022, 12, 144.	2.5	14
2	Ivacaftor Alters Macrophage and Lymphocyte Infiltration in the Lungs Following Lipopolysaccharide Exposure. ACS Pharmacology and Translational Science, 2022, 5, 419-428.	4.9	3
3	The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson's disease. Scientific Reports, 2021, 11, 7934.	3.3	18
4	Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7606.	4.1	15
5	ATH434 Reverses Colorectal Dysfunction in the A53T Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1821-1832.	2.8	5
6	Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum. Cell and Tissue Research, 2020, 379, 109-120.	2.9	10
7	Chronic isolation stress is associated with increased colonic and motor symptoms in the A53T mouse model of Parkinson's disease. Neurogastroenterology and Motility, 2020, 32, e13755.	3.0	5
8	Dietary Betaine Improves Intestinal Barrier Function and Ameliorates the Impact of Heat Stress in Multiple Vital Organs as Measured by Evans Blue Dye in Broiler Chickens. Animals, 2020, 10, 38.	2.3	30
9	The effect of high-fat diet-induced metabolic disturbance on corneal neuroimmune features. Experimental Eye Research, 2020, 201, 108298.	2.6	7
10	Squalamine Restores the Function of the Enteric Nervous System in Mouse Models of Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 1477-1491.	2.8	21
11	Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Current Opinion in Supportive and Palliative Care, 2020, 14, 293-300.	1.3	13
12	Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterology and Motility, 2020, 32, e13893.	3.0	17
13	Muscarinic receptor 1 allosteric modulators stimulate colorectal emptying in dog, mouse and rat and resolve constipation. Neurogastroenterology and Motility, 2019, 31, e13692.	3.0	5
14	Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Frontiers in Neuroscience, 2019, 13, 449.	2.8	5
15	Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell and Tissue Research, 2019, 378, 33-48.	2.9	15
16	Oxaliplatin Treatment Alters Systemic Immune Responses. BioMed Research International, 2019, 2019, 1-15.	1.9	35
17	Agonist-dependent development of delta opioid receptor tolerance in the colon. Cellular and Molecular Life Sciences, 2019, 76, 3033-3050.	5.4	9
18	Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell and Tissue Research, 2019, 376, 37-49.	2.9	26

#	Article	IF	Citations
19	The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites. ERJ Open Research, 2018, 4, 00127-2017.	2.6	21
20	Oxaliplatinâ€induced enteric neuronal loss and intestinal dysfunction is prevented by coâ€treatment with BGPâ€15. British Journal of Pharmacology, 2018, 175, 656-677.	5. 4	34
21	PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacological Research, 2018, 137, 104-113.	7.1	38
22	Effects of Oxaliplatin Treatment on the Myenteric Plexus Innervation and Glia in the Murine Distal Colon. Journal of Histochemistry and Cytochemistry, 2018, 66, 723-736.	2.5	11
23	Inflammation-associated changes in DOR expression and function in the mouse colon. American Journal of Physiology - Renal Physiology, 2018, 315, G544-G559.	3.4	20
24	Oxaliplatin-induced changes in microbiota, TLR4+ cells and enhanced HMGB1 expression in the murine colon. PLoS ONE, 2018, 13, e0198359.	2.5	33
25	Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas, 2017, 105, 23-29.	2.4	43
26	Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Frontiers in Physiology, 2017, 8, 391.	2.8	21
27	Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches. Current Medicinal Chemistry, 2017, 24, 1537-1557.	2.4	228
28	Neurotoxicity Associated with Platinum-Based Anti-Cancer Agents: What are the Implications of Copper Transporters?. Current Medicinal Chemistry, 2017, 24, 1520-1536.	2.4	21
29	Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Frontiers in Pharmacology, 2016, 7, 414.	3.5	150
30	Effects of Oxaliplatin Treatment on the Enteric Glial Cells and Neurons in the Mouse Ileum. Journal of Histochemistry and Cytochemistry, 2016, 64, 530-545.	2. 5	29
31	Role of oxidative stress in oxaliplatinâ€induced enteric neuropathy and colonic dysmotility in mice. British Journal of Pharmacology, 2016, 173, 3502-3521.	5.4	74
32	Anti-Colorectal Cancer Chemotherapy-Induced Diarrhoea: Current Treatments and Side-Effects. International Journal of Clinical Medicine, 2014, 05, 393-406.	0.2	50