Taras Pogorelov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407594/publications.pdf

Version: 2024-02-01

44 papers 1,527 citations

430874 18 h-index 395702 33 g-index

51 all docs

51 docs citations

51 times ranked 2067 citing authors

#	Article	IF	Citations
1	Photodynamics in Complex Environments: <i>Ab Initio</i> Multiple Spawning Quantum Mechanical/Molecular Mechanical Dynamics. Journal of Physical Chemistry B, 2009, 113, 3280-3291.	2.6	259
2	Ab initio protein structure prediction. Current Opinion in Structural Biology, 2002, 12, 176-181.	5.7	176
3	Accelerating Membrane Insertion of Peripheral Proteins with a Novel Membrane Mimetic Model. Biophysical Journal, 2012, 102, 2130-2139.	0.5	123
4	Bioinformatic Mapping of Radical $\langle i \rangle S \langle i \rangle$ -Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cl̂ 1 , Cl̂ 2 , and Cl̂ 3 -Linked Thioether-Containing Peptides. Journal of the American Chemical Society, 2019, 141, 8228-8238.	13.7	123
5	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell, 2019, 179, 1098-1111.e23.	28.9	122
6	Molecular Determinants of Phospholipid Synergy in Blood Clotting. Journal of Biological Chemistry, 2011, 286, 23247-23253.	3.4	94
7	CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. Biophysical Journal, 2015, 109, 2012-2022.	0.5	89
8	Structural insights into enzymatic [4+2] <i>aza</i> -cycloaddition in thiopeptide antibiotic biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12928-12933.	7.1	70
9	Partitioning of Amino Acids into a Model Membrane: Capturing the Interface. Journal of Physical Chemistry B, 2014, 118, 1481-1492.	2.6	48
10	Atomic-level description of protein–lipid interactions using an accelerated membrane model. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1573-1583.	2.6	40
11	In-Cell Protein–Protein Contacts: Transient Interactions in the Crowd. Journal of Physical Chemistry Letters, 2019, 10, 5667-5673.	4.6	40
12	Variations in the Fast Folding Rates of the λ-Repressor: A Hybrid Molecular Dynamics Study. Biophysical Journal, 2004, 87, 207-214.	0.5	34
13	Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. Journal of Membrane Biology, 2015, 248, 563-582.	2.1	33
14	Bioinformatics-Guided Expansion and Discovery of Graspetides. ACS Chemical Biology, 2021, 16, 2787-2797.	3.4	31
15	Conformational Dynamics of the Human Islet Amyloid Polypeptide in a Membrane Environment: Toward the Aggregation Prone Form. Biochemistry, 2016, 55, 2031-2042.	2.5	27
16	Cytochrome c2Exit Strategy:Â Dissociation Studies and Evolutionary Implications. Journal of Physical Chemistry B, 2007, 111, 618-634.	2.6	25
17	Mapping fast protein folding with multiple-site fluorescent probes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7966-7971.	7.1	24
18	Protein-Phospholipid interactions in blood clotting. Thrombosis Research, 2010, 125, S23-S25.	1.7	23

#	Article	IF	CITATIONS
19	Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems through Customized <i>in Silico</i> i> Solvents. Journal of Physical Chemistry B, 2017, 121, 3764-3776.	2.6	19
20	Crowding, Sticking, and Partial Folding of GTT WW Domain in a Small Cytoplasm Model. Journal of Physical Chemistry B, 2020, 124, 4732-4740.	2.6	18
21	C3-OH of Amphotericin B Plays an Important Role in Ion Conductance. Journal of the American Chemical Society, 2015, 137, 15102-15104.	13.7	16
22	Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry, 2018, 57, 6897-6905.	2.5	14
23	Discovery of Prenyltransferase Inhibitors with <i>In Vitro</i> and <i>In Vivo</i> Antibacterial Activity. ACS Infectious Diseases, 2020, 6, 2979-2993.	3.8	14
24	Can Local Probes Go Global? A Joint Experiment–Simulation Analysis of λ _{6–85} Folding. Journal of Physical Chemistry Letters, 2016, 7, 1960-1965.	4.6	12
25	Fast pressure-jump all-atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5356-5361.	7.1	10
26	Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes. Nature Structural and Molecular Biology, 2021, 28, 972-981.	8.2	10
27	A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. Journal of Biological Chemistry, 2021, 297, 100876.	3.4	9
28	Filling Up the Heme Pocket Stabilizes Apomyoglobin and Speeds Up Its Folding. Journal of Physical Chemistry B, 2014, 118, 6511-6518.	2.6	8
29	Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain. Journal of Physical Chemistry B, 2019, 123, 10709-10717.	2.6	5
30	Sonification-Enhanced Lattice Model Animations for Teaching the Protein Folding Reaction. Journal of Chemical Education, 2022, 99, 1220-1230.	2.3	4
31	Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD. ACS Chemical Biology, 2022, 17, 1215-1225.	3.4	3
32	Charachterizing Structure and Dynamics of Calcium-Induced Clusters ofÂPhosphatidylserine in Mixed Lipid Bilayers. Biophysical Journal, 2011, 100, 172a.	0.5	1
33	Glycophorin a Helix Insertion, Positioning, and Dimerization in Model Membranes. Biophysical Journal, 2012, 102, 413a.	0.5	1
34	Calcium-Induced Sculpturing of the Plasma Membrane: Lipid Microclusters Cast by Anionic Lipids. Biophysical Journal, 2017, 112, 467a-468a.	0.5	1
35	Spontaneous Binding of Membrane-Anchoring Proteins Captured with a Highly Mobile Membrane-Mimetic Model. Biophysical Journal, 2011, 100, 639a-640a.	0.5	0
36	Host Defense Peptides: Molecular Details of Attack on Bacterial and Neoplastic Mammalian Model Membranes. Biophysical Journal, 2013, 104, 21a.	0.5	0

3

#	Article	IF	CITATIONS
37	Mapping the Mechanism of Fast Protein Folding with Multiple Probes. Biophysical Journal, 2015, 108, 347a-348a.	0.5	0
38	CDD., 2015,,.		0
39	Atomic Resolution Studies of Sterol Interactions by Solid-State NMR Spectroscopy. Biophysical Journal, 2016, 110, 36a.	0.5	0
40	Capturing Transmembrane Dimer Structures with Mobile Membranes: Point Mutations Take Charge. Biophysical Journal, 2016, 110, 427a-428a.	0.5	0
41	Anionic Lipids Take Charge: Juxtamembrane Domain Interactions with Cellular Membrane. Biophysical Journal, 2018, 114, 463a.	0.5	O
42	The Role of TMAO in Protein Folding: A Joint Experimental and Simulation Study. Biophysical Journal, 2018, 114, 51a.	0.5	0
43	Fast Pressure Jump Reveals Site-Specific Protein Dehydration-Folding Dynamics. Biophysical Journal, 2019, 116, 38a.	0.5	0
44	Describing Antifungal Drug-Sterol Interactions Inside the Membrane: The Role of Dynamics. Biophysical Journal, 2021, 120, 191a.	0.5	0