
Thomas J Jentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4075750/publications.pdf Version: 2024-02-01

THOMAS LIENTSCH

#	Article	IF	CITATIONS
1	Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews, 2002, 82, 503-568.	28.8	1,120
2	A Potassium Channel Mutation in Neonatal Human Epilepsy. Science, 1998, 279, 403-406.	12.6	1,013
3	Loss of the ClC-7 Chloride Channel Leads to Osteopetrosis in Mice and Man. Cell, 2001, 104, 205-215.	28.9	918
4	KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness. Cell, 1999, 96, 437-446.	28.9	783
5	Neuronal KCNQ potassium channels:physislogy and role in disease. Nature Reviews Neuroscience, 2000, 1, 21-30.	10.2	766
6	A common molecular basis for three inherited kidney stone diseases. Nature, 1996, 379, 445-449.	27.8	694
7	A chloride channel widely expressed in epithelial and non-epithelial cells. Nature, 1992, 356, 57-60.	27.8	560
8	Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature, 2001, 414, 558-561.	27.8	538
9	Disruption of KCC2 Reveals an Essential Role of K-Cl Cotransport Already in Early Synaptic Inhibition. Neuron, 2001, 30, 515-524.	8.1	530
10	Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature, 1990, 348, 510-514.	27.8	511
11	Identification of LRRC8 Heteromers as an Essential Component of the Volume-Regulated Anion Channel VRAC. Science, 2014, 344, 634-638.	12.6	507
12	ClC-5 Clchannel disruption impairs endocytosis in a mouse model for Dent's disease. Nature, 2000, 408, 369-373.	27.8	500
13	Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 1998, 396, 687-690.	27.8	486
14	Disruption of ClC-3, a Chloride Channel Expressed on Synaptic Vesicles, Leads to a Loss of the Hippocampus. Neuron, 2001, 29, 185-196.	8.1	480
15	Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature, 2005, 436, 424-427.	27.8	469
16	A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 2000, 403, 196-199.	27.8	459
17	Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature, 1991, 354, 301-304.	27.8	429
18	Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature, 1992, 360, 759-762.	27.8	410

#	Article	IF	CITATIONS
19	Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature, 1991, 354, 304-308.	27.8	382
20	Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature, 2002, 416, 874-878.	27.8	366
21	Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature, 1995, 373, 527-531.	27.8	355
22	CLC Chloride Channels and Transporters: From Genes to Protein Structure, Pathology and Physiology. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 3-36.	5.2	348
23	KCNQ5, a Novel Potassium Channel Broadly Expressed in Brain, Mediates M-type Currents. Journal of Biological Chemistry, 2000, 275, 24089-24095.	3.4	346
24	Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO Journal, 2005, 24, 1079-1091.	7.8	324
25	Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Human Molecular Genetics, 2000, 9, 2059-2063.	2.9	315
26	ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function. Nature, 2006, 440, 220-223.	27.8	313
27	CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiological Reviews, 2018, 98, 1493-1590.	28.8	308
28	Male germ cells and photoreceptors, both dependent on close cell–cell interactions, degenerate upon ClC-2 Clâ~' channel disruption. EMBO Journal, 2001, 20, 1289-1299.	7.8	287
29	Two physically distinct pores in the dimeric CIC-0 chloride channel. Nature, 1996, 383, 340-343.	27.8	279
30	Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. Journal of Comparative Neurology, 2004, 468, 57-64.	1.6	261
31	Cloning and Functional Expression of Rat CLC-5, a Chloride Channel Related to Kidney Disease. Journal of Biological Chemistry, 1995, 270, 31172-31177.	3.4	259
32	VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nature Reviews Molecular Cell Biology, 2016, 17, 293-307.	37.0	251
33	Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia, 2013, 54, 1270-1281.	5.1	250
34	A cation counterflux supports lysosomal acidification. Journal of Cell Biology, 2010, 189, 1171-1186.	5.2	247
35	Molecular Determinants of KCNQ (K _v 7) K ⁺ Channel Sensitivity to the Anticonvulsant Retigabine. Journal of Neuroscience, 2005, 25, 5051-5060.	3.6	235
36	Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO Journal, 2006, 25, 642-652.	7.8	227

#	Article	IF	CITATIONS
37	PHYSIOLOGICAL FUNCTIONS OF CLC Cl ^{â^²} CHANNELS GLEANED FROM HUMAN GENETIC DISEASE AND MOUSE MODELS. Annual Review of Physiology, 2005, 67, 779-807.	13.1	223
38	Mutational Analysis Demonstrates That ClC-4 and ClC-5 Directly Mediate Plasma Membrane Currents. Journal of Biological Chemistry, 1999, 274, 896-902.	3.4	220
39	Alteration of GABAA Receptor Function Following Gene Transfer of the CLC-2 Chloride Channel. Neuron, 1996, 17, 543-551.	8.1	211
40	Lysosomal Pathology and Osteopetrosis upon Loss of H ⁺ -Driven Lysosomal Cl [–] Accumulation. Science, 2010, 328, 1401-1403.	12.6	210
41	Subunit composition of <scp>VRAC</scp> channels determines substrate specificity and cellular resistance to <scp>P</scp> tâ€based antiâ€cancer drugs. EMBO Journal, 2015, 34, 2993-3008.	7.8	209
42	Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. Journal of Physiology, 2007, 578, 633-640.	2.9	208
43	Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nature Genetics, 2001, 28, 218-219.	21.4	206
44	Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO Journal, 2003, 22, 5422-5434.	7.8	202
45	Ion channel diseases. Human Molecular Genetics, 2002, 11, 2435-2445.	2.9	197
46	ClC-7 is a slowly voltage-gated 2Cl ^{â^`} /1H ⁺ -exchanger and requires Ostm1 for transport activity. EMBO Journal, 2011, 30, 2140-2152.	7.8	188
47	Potassium Ion Movement in the Inner Ear: Insights from Genetic Disease and Mouse Models. Physiology, 2009, 24, 307-316.	3.1	186
48	Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron, 1995, 15, 1455-1463.	8.1	183
49	Ca2+-activated Clâ^ currents are dispensable for olfaction. Nature Neuroscience, 2011, 14, 763-769.	14.8	183
50	Chloride in Vesicular Trafficking and Function. Annual Review of Physiology, 2013, 75, 453-477.	13.1	182
51	Ion channels: Function unravelled by dysfunction. Nature Cell Biology, 2004, 6, 1039-1047.	10.3	175
52	Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity, 2020, 52, 767-781.e6.	14.3	175
53	The ClC-5 chloride channel knock-out mouse – an animal model for Dent's disease. Pflugers Archiv European Journal of Physiology, 2003, 445, 456-462.	2.8	173
54	Chloride channels: An emerging molecular picture. BioEssays, 1997, 19, 117-126.	2.5	169

#	Article	IF	CITATIONS
55	CIC-6 and CIC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Letters, 1995, 377, 15-20.	2.8	168
56	Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13854-13859.	7.1	166
57	Conservation of Chloride Channel Structure Revealed by an Inhibitor Binding Site in ClC-1. Neuron, 2003, 38, 47-59.	8.1	161
58	Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance Is Crucial for Renal Endocytosis. Science, 2010, 328, 1398-1401.	12.6	158
59	A Family of Putative Chloride Channels from Arabidopsis and Functional Complementation of a Yeast Strain with a CLC Gene Disruption. Journal of Biological Chemistry, 1996, 271, 33632-33638.	3.4	157
60	Surface Expression and Single Channel Properties of KCNQ2/KCNQ3, M-type K+ Channels Involved in Epilepsy. Journal of Biological Chemistry, 2000, 275, 13343-13348.	3.4	154
61	A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nature Genetics, 2018, 50, 355-361.	21.4	154
62	Leukoencephalopathy upon Disruption of the Chloride Channel ClC-2. Journal of Neuroscience, 2007, 27, 6581-6589.	3.6	151
63	Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Human Molecular Genetics, 1997, 6, 1233-1239.	2.9	148
64	Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Human Molecular Genetics, 1994, 3, 941-946.	2.9	135
65	Functional and structural conservation of CBS domains from CLC chloride channels. Journal of Physiology, 2004, 557, 363-378.	2.9	131
66	Cell Biology and Physiology of CLC Chloride Channels and Transporters. , 2012, 2, 1701-1744.		129
67	Chloride channels: a molecular perspective. Current Opinion in Neurobiology, 1996, 6, 303-310.	4.2	128
68	Pores Formed by Single Subunits in Mixed Dimers of Different CLC Chloride Channels. Journal of Biological Chemistry, 2001, 276, 2347-2353.	3.4	127
69	NKCC1-Dependent GABAergic Excitation Drives Synaptic Network Maturation during Early Hippocampal Development. Journal of Neuroscience, 2009, 29, 3419-3430.	3.6	127
70	A carboxyâ€ŧerminal domain determines the subunit specificity of KCNQ K + channel assembly. EMBO Reports, 2003, 4, 76-81.	4.5	125
71	An Internalization Signal in ClC-5, an Endosomal Clâ^'Channel Mutated in Dent's Disease. Journal of Biological Chemistry, 2001, 276, 12049-12054.	3.4	124
72	Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. Journal of Membrane Biology, 1984, 81, 189-204.	2.1	123

#	Article	IF	CITATIONS
73	Endocochlear potential depends on Clâ^ channels: mechanism underlying deafness in Bartter syndrome IV. EMBO Journal, 2008, 27, 2907-2917.	7.8	123
74	Temperature Dependence of Fast and Slow Gating Relaxations of ClC-0 Chloride Channels. Journal of General Physiology, 1997, 109, 105-116.	1.9	122
75	CLC chloride channels and transporters. Current Opinion in Neurobiology, 2005, 15, 319-325.	4.2	120
76	Determinants of Anion-Proton Coupling in Mammalian Endosomal CLC Proteins. Journal of Biological Chemistry, 2008, 283, 4219-4227.	3.4	118
77	GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Clâ^' Channel Auxiliary Subunit. Neuron, 2012, 73, 951-961.	8.1	118
78	Golgi Localization and Functionally Important Domains in the NH2 and COOH Terminus of the Yeast CLC Putative Chloride Channel Gef1p. Journal of Biological Chemistry, 1998, 273, 15110-15118.	3.4	116
79	Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 2015, 18, 1845-1852.	14.8	113
80	Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. Journal of Clinical Investigation, 2005, 115, 2039-2046.	8.2	112
81	Chloride dependence of hyperpolarizationâ€activated chloride channel gates. Journal of Physiology, 1999, 515, 341-353.	2.9	110
82	In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genetics, 2015, 11, e1005454.	3.5	109
83	Stretch–Activation of Angiotensin II Type 1 _a Receptors Contributes to the Myogenic Response of Mouse Mesenteric and Renal Arteries. Circulation Research, 2014, 115, 263-272.	4.5	108
84	Mice with a Targeted Disruption of the Cl â^' /HCO 3 â^' Exchanger AE3 Display a Reduced Seizure Threshold. Molecular and Cellular Biology, 2006, 26, 182-191.	2.3	107
85	Chloride channelopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 173-189.	3.8	107
86	The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10232-10237.	7.1	106
87	Selective transport of neurotransmitters and –modulators by distinct volume-regulated LRRC8 anion channels. Journal of Cell Science, 2017, 130, 1122-1133.	2.0	104
88	Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. Journal of Physiology, 1998, 506, 665-678.	2.9	103
89	Residues Important for Nitrate/Proton Coupling in Plant and Mammalian CLC Transporters. Journal of Biological Chemistry, 2009, 284, 11184-11193.	3.4	103
90	Functional and Structural Analysis of CIC-K Chloride Channels Involved in Renal Disease. Journal of Biological Chemistry, 2000, 275, 24527-24533.	3.4	98

#	Article	IF	CITATIONS
91	Disruption of the K+ Channel β-Subunit KCNE3 Reveals an Important Role in Intestinal and Tracheal Clâ^' Transport. Journal of Biological Chemistry, 2010, 285, 7165-7175.	3.4	95
92	KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Nature Neuroscience, 2012, 15, 138-145.	14.8	95
93	Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nature Communications, 2014, 5, 3475.	12.8	92
94	Discovery of CLC transport proteins: cloning, structure, function and pathophysiology. Journal of Physiology, 2015, 593, 4091-4109.	2.9	89
95	Reconstitution of Functional Voltage-gated Chloride Channels from Complementary Fragments of CLC-1. Journal of Biological Chemistry, 1997, 272, 20515-20521.	3.4	88
96	The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron. Journal of the American Society of Nephrology: JASN, 2017, 28, 209-217.	6.1	87
97	CLC chloride channels: correlating structure with function. Current Opinion in Structural Biology, 2002, 12, 531-539.	5.7	86
98	Structural Determinants of M-Type KCNQ (Kv7) K+ Channel Assembly. Journal of Neuroscience, 2006, 26, 3757-3766.	3.6	85
99	Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice. Journal of Clinical Investigation, 2007, 117, 1708-1717.	8.2	80
100	Additional Disruption of the ClC-2 Cl- Channel Does Not Exacerbate the Cystic Fibrosis Phenotype of Cystic Fibrosis Transmembrane Conductance Regulator Mouse Models. Journal of Biological Chemistry, 2004, 279, 22276-22283.	3.4	78
101	Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells. American Journal of Physiology - Cell Physiology, 2001, 280, C373-C381.	4.6	74
102	Plasmodium Induces Swelling-activated ClC-2 Anion Channels in the Host Erythrocyte. Journal of Biological Chemistry, 2004, 279, 41444-41452.	3.4	74
103	The Late Endosomal ClC-6 Mediates Proton/Chloride Countertransport in Heterologous Plasma Membrane Expression. Journal of Biological Chemistry, 2010, 285, 21689-21697.	3.4	74
104	Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. Journal of Physiology, 2008, 586, 1823-1832.	2.9	73
105	Raising cytosolic Cl ^{â^'} in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO Journal, 2012, 31, 1217-1230.	7.8	73
106	VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflugers Archiv European Journal of Physiology, 2016, 468, 385-393.	2.8	73
107	Functional characterization of renal chloride channel, CLCN5, mutations associated with Dent'sJapan disease. Kidney International, 1998, 54, 1850-1856.	5.2	71
108	LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nature Communications, 2018, 9, 1974.	12.8	71

#	Article	IF	CITATIONS
109	Molecular diagnosis of McArdle disease: Revised genomic structure of the myophosphorylase gene and identification of a novel mutation. Human Mutation, 1998, 12, 27-32.	2.5	70
110	Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClCâ€7. FASEB Journal, 2009, 23, 4056-4068.	0.5	70
111	Role of the Vesicular Chloride Transporter ClC-3 in Neuroendocrine Tissue. Journal of Neuroscience, 2008, 28, 10587-10598.	3.6	68
112	From Tonus to Tonicity. Journal of the American Society of Nephrology: JASN, 2000, 11, 1331-1339.	6.1	67
113	Sorting Motifs of the Endosomal/Lysosomal CLC Chloride Transporters. Journal of Biological Chemistry, 2010, 285, 34537-34548.	3.4	66
114	Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. ELife, 2019, 8, .	6.0	63
115	Determinants of slow gating in ClC-0, the voltage-gated chloride channel of <i>Torpedo marmorata</i> . American Journal of Physiology - Cell Physiology, 1998, 274, C966-C973.	4.6	58
116	A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the Vâ€ATPase a4 subunit in the proximal tubule. EMBO Molecular Medicine, 2012, 4, 1057-1071.	6.9	58
117	Inactivation and Anion Selectivity of Volume-regulated Anion Channels (VRACs) Depend on C-terminal Residues of the First Extracellular Loop. Journal of Biological Chemistry, 2016, 291, 17040-17048.	3.4	57
118	KCNQ5 K+ channels control hippocampal synaptic inhibition and fast network oscillations. Nature Communications, 2015, 6, 6254.	12.8	56
119	Regulation of cytoplasmic pH of cultured bovine corneal endothelial cells in the absence and presence of bicarbonate. Journal of Membrane Biology, 1988, 103, 29-40.	2.1	55
120	CLC Chloride Channels in Caenorhabditis elegans. Journal of Biological Chemistry, 1999, 274, 34238-34244.	3.4	55
121	Inward Rectification in ClC-0 Chloride Channels Caused by Mutations in Several Protein Regions. Journal of General Physiology, 1997, 110, 165-171.	1.9	54
122	Transport activity and presence of ClCâ€7/Ostm1 complex account for different cellular functions. EMBO Reports, 2014, 15, 784-791.	4.5	51
123	Neurogenic Mechanisms Contribute to Hypertension in Mice With Disruption of the K-Cl Cotransporter KCC3. Circulation Research, 2006, 98, 549-556.	4.5	50
124	Chloride channels are different. Nature, 2002, 415, 276-277.	27.8	46
125	Characterization of Renal Chloride Channel (CLCN5) Mutations in Dent's Disease. Journal of the American Society of Nephrology: JASN, 2000, 11, 1460-1468.	6.1	46
126	Generation and analyses of R8L barttin knockin mouse. American Journal of Physiology - Renal Physiology, 2011, 301, F297-F307.	2.7	45

#	Article	IF	CITATIONS
127	Molecular physiology of anion channels. Current Opinion in Cell Biology, 1994, 6, 600-606.	5.4	44
128	Distinct Neuropathologic Phenotypes After Disrupting the Chloride Transport Proteins ClC-6 or ClC-7/Ostm1. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1228-1246.	1.7	44
129	No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nature Genetics, 2010, 42, 3-3.	21.4	44
130	Pathophysiology of KCNQ Channels: Neonatal Epilepsy and Progressive Deafness. Epilepsia, 2000, 41, 1068-1069.	5.1	40
131	Role of CIC-5 in Renal Endocytosis Is Unique among CIC Exchangers and Does Not Require PY-motif-dependent Ubiquitylation. Journal of Biological Chemistry, 2010, 285, 17595-17603.	3.4	38
132	Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Clâ~'/1H+ Exchanger ClC-7/Ostm1. Journal of Biological Chemistry, 2013, 288, 28611-28619.	3.4	38
133	<i>CLCN7</i> and <i>TCIRG1</i> Mutations Differentially Affect Bone Matrix Mineralization in Osteopetrotic Individuals. Journal of Bone and Mineral Research, 2014, 29, 982-991.	2.8	38
134	Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. Journal of Biological Chemistry, 2017, 292, 10845-10854.	3.4	38
135	A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle. DMM Disease Models and Mechanisms, 2014, 7, 119-28.	2.4	36
136	Vestibular Role of KCNQ4 and KCNQ5 K+ Channels Revealed by Mouse Models. Journal of Biological Chemistry, 2013, 288, 9334-9344.	3.4	36
137	Enhanced synaptic activity and epileptiform events in the embryonic KCC2 deficient hippocampus. Frontiers in Cellular Neuroscience, 2011, 5, 23.	3.7	35
138	Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. Communications Biology, 2020, 3, 240.	4.4	35
139	Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nature Communications, 2019, 10, 4678.	12.8	33
140	Physiological roles of CLC Clâ^'/H+ exchangers in renal proximal tubules. Pflugers Archiv European Journal of Physiology, 2009, 458, 23-37.	2.8	32
141	LRRC8/VRAC anion channels are required for late stages of spermatid development in mice. Journal of Biological Chemistry, 2018, 293, 11796-11808.	3.4	32
142	LRRC8 N termini influence pore properties and gating of volume-regulated anion channels (VRACs). Journal of Biological Chemistry, 2018, 293, 13440-13451.	3.4	30
143	Uncoupling endosomal <scp>CLC</scp> chloride/proton exchange causes severe neurodegeneration. EMBO Journal, 2020, 39, e103358.	7.8	29
144	Analysis of <i>CLCN2</i> as Candidate Gene for Megalencephalic Leukoencephalopathy with Subcortical Cysts. Genetic Testing and Molecular Biomarkers, 2010, 14, 255-257.	0.7	28

#	Article	IF	CITATIONS
145	Anion dependence of electrical effects of bicarbonate and sodium on cultured bovine corneal endothelial cells. Pflugers Archiv European Journal of Physiology, 1985, 403, 175-185.	2.8	27
146	Neurological diseases caused by ion-channel mutations. Current Opinion in Neurobiology, 2000, 10, 409-415.	4.2	26
147	ClC-3—A Granular Anion Transporter Involved in Insulin Secretion?. Cell Metabolism, 2010, 12, 307-308.	16.2	25
148	Electrogenic sodium-bicarbonate symport in cultured corneal endothelial cells. Pflugers Archiv European Journal of Physiology, 1985, 405, S167-S171.	2.8	24
149	Regulation of intracellular pH in cultured bovine retinal pigment epithelial cells. Pflugers Archiv European Journal of Physiology, 1988, 411, 47-52.	2.8	24
150	Trinity of cation channels. Nature, 1994, 367, 412-413.	27.8	24
151	Ion transport mechanisms in cultured bovine corneal endothelial cells. Current Eye Research, 1985, 4, 361-369.	1.5	23
152	Chloride channels. Current Opinion in Neurobiology, 1993, 3, 316-321.	4.2	23
153	A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Clâ^'/H+-Exchanger, Causes Early-Onset Neurodegeneration. American Journal of Human Genetics, 2020, 107, 1062-1077.	6.2	23
154	Proton-gated anion transport governs macropinosome shrinkage. Nature Cell Biology, 2022, 24, 885-895.	10.3	23
155	Unique Structure and Function of Chloride Transporting CLC Proteins. IEEE Transactions on Nanobioscience, 2005, 4, 49-57.	3.3	18
156	KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors. Journal of Biological Chemistry, 2016, 291, 5566-5575.	3.4	18
157	K _{2P} TASKâ€2 and KCNQ1–KCNE3 K ⁺ channels are major players contributing to intestinal anion and fluid secretion. Journal of Physiology, 2018, 596, 393-407.	2.9	18
158	Gating choreography and mechanism of the human proton-activated chloride channel ASOR. Science Advances, 2022, 8, eabm3942.	10.3	18
159	The CIC Family of Voltage-Gated Chloride Channels: Structure and Function. Annals of the New York Academy of Sciences, 1993, 707, 285-293.	3.8	17
160	Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. American Journal of Human Genetics, 2021, 108, 1450-1465.	6.2	16
161	Chapter 2 Molecular Biology of Voltage-Gated Chloride Channels. Current Topics in Membranes, 1994, 42, 35-57.	0.9	14
162	Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination. Nature Communications, 2016, 7, 12043.	12.8	14

#	Article	IF	CITATIONS
163	Ca2+-activated Clâ^' currents in the murine vomeronasal organ enhance neuronal spiking but are dispensable for male–male aggression. Journal of Biological Chemistry, 2018, 293, 10392-10403.	3.4	13
164	Departure gate of acidic Ca ²⁺ confirmed. EMBO Journal, 2015, 34, 1737-1739.	7.8	12
165	Cellular basis of ClC-2 Clâ^' channel–related brain and testisÂpathologies. Journal of Biological Chemistry, 2021, 296, 100074.	3.4	12
166	Chloride channel 2 gene (<i>Clc2</i>) maps to chromosome 16 of the mouse, extending a region of conserved synteny with human chromosome 3q. Genetical Research, 1995, 66, 175-178.	0.9	10
167	Response of the intracellular potentials of cultured bovine lens cells to ions and inhibitors. Experimental Eye Research, 1985, 41, 131-144.	2.6	9
168	Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1528-1545.	6.1	8
169	Molecular physiology of renal chloride channels. Current Opinion in Nephrology and Hypertension, 1998, 7, 497-502.	2.0	6
170	Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts. Nature Communications, 2021, 12, 4801.	12.8	6
171	Chapter 5 Channelopathies of Transepithelial Transport and Vesicular Function. Advances in Genetics, 2008, 63, 113-152.	1.8	4
172	The calcium antagonist nisoldipine stimulates the electrolyte transport of the isolated frog skin. Biochemical Pharmacology, 1984, 33, 2926-2928.	4.4	3
173	From mice to man: chloride transport in leukoencephalopathy. Lancet Neurology, The, 2013, 12, 626-628.	10.2	3
174	To the Editor. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 64-64.	5.2	2
175	[37] Cell culture of bovine corneal endothelial cells and its application to transport studies. Methods in Enzymology, 1990, 192, 571-582.	1.0	1
176	REVIEW â– : Chloride Channel Myotonias. Neuroscientist, 1996, 2, 225-232.	3.5	1
177	Physiological Functions of the CLC Chloride Transport Proteins. Advances in Molecular and Cell Biology, 2006, , 9-57.	0.1	1
178	The CLC Family of Chloride Channels and Transporters. , 2010, , 209-231.		1
179	S-6-3 Analysis of CLC-1 chloride channel mutations causing myotonia. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1995, 97, S13-S14.	1.4	0
180	Planned law could put German research at risk. Nature, 2001, 413, 772-772.	27.8	0

#	Article	lF	CITATIONS
181	A cation counterflux supports lysosomal acidification. Journal of General Physiology, 2010, 136, i2-i2.	1.9	О
182	Clâ^' Channels and Clâ^'/H+ Exchangers. , 2021, , 470-477.		0
183	Clâ^' Channels and Clâ^'/H+ Exchangers. , 2008, , 370-373.		0