
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4075291/publications.pdf Version: 2024-02-01

ΔΠΟΙΛΝ S ΡΑΥ

#	Article	IF	CITATIONS
1	Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 2017, 9, .	12.4	1,279
2	Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531, 381-385.	27.8	1,245
3	Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio, 2018, 9, .	4.1	1,142
4	Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1- <i>f</i>][triazin-4-amino] Adenine <i>C</i> -Nucleoside (CS-5734) for the Treatment of Ebola and Emerging Viruses. Journal of Medicinal Chemistry, 2017, 60, 1648-1661.	6.4	547
5	GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Scientific Reports, 2017, 7, 43395.	3.3	373
6	Toxicity of Antiviral Nucleoside Analogs and the Human Mitochondrial DNA Polymerase. Journal of Biological Chemistry, 2001, 276, 40847-40857.	3.4	362
7	Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Research, 2010, 85, 39-58.	4.1	314
8	Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Research, 2016, 125, 63-70.	4.1	302
9	Mechanism of Active Renal Tubular Efflux of Tenofovir. Antimicrobial Agents and Chemotherapy, 2006, 50, 3297-3304.	3.2	298
10	Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 2015, 347, 771-775.	12.6	294
11	GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2018, 155, 1463-1473.e6.	1.3	238
12	Intracellular Metabolism and In Vitro Activity of Tenofovir against Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2006, 50, 2471-2477.	3.2	221
13	Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney International, 2014, 86, 350-357.	5.2	198
14	Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clinical Pharmacology and Therapeutics, 2018, 104, 890-899.	4.7	185
15	Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2705-2707.	2.2	173
16	Acetyl-CoA Carboxylase Inhibitor GS-0976 for 12 Weeks Reduces Hepatic De Novo Lipogenesis and Steatosis in Patients With Nonalcoholic Steatohepatitis. Clinical Gastroenterology and Hepatology, 2018, 16, 1983-1991.e3.	4.4	153
17	Implications of Efficient Hepatic Delivery by Tenofovir Alafenamide (CS-7340) for Hepatitis B Virus Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 3563-3569.	3.2	133
18	Role of Purine Nucleoside Phosphorylase in Interactions between 2′,3′-Dideoxyinosine and Allopurinol, Ganciclovir, or Tenofovir. Antimicrobial Agents and Chemotherapy, 2004, 48, 1089-1095.	3.2	132

#	Article	IF	CITATIONS
19	Cobicistat Boosts the Intestinal Absorption of Transport Substrates, Including HIV Protease Inhibitors and GS-7340, <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 5409-5413.	3.2	126
20	Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides. PLoS Pathogens, 2012, 8, e1003030.	4.7	119
21	Effects of Human Immunodeficiency Virus Protease Inhibitors on the Intestinal Absorption of Tenofovir Disoproxil Fumarate In Vitro. Antimicrobial Agents and Chemotherapy, 2007, 51, 3498-3504.	3.2	118
22	Chronic Administration of Tenofovir to Rhesus Macaques from Infancy through Adulthood and Pregnancy: Summary of Pharmacokinetics and Biological and Virological Effects. Antimicrobial Agents and Chemotherapy, 2008, 52, 3144-3160.	3.2	114
23	Discovery of the First <i>C</i> -Nucleoside HCV Polymerase Inhibitor (GS-6620) with Demonstrated Antiviral Response in HCV Infected Patients. Journal of Medicinal Chemistry, 2014, 57, 1812-1825.	6.4	108
24	Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. Journal of Medicinal Chemistry, 2011, 54, 5498-5507.	6.4	101
25	Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Drug Metabolism and Disposition, 2016, 44, 1752-1758.	3.3	100
26	Design and Profiling of GS-9148, a Novel Nucleotide Analog Active against Nucleoside-Resistant Variants of Human Immunodeficiency Virus Type 1, and Its Orally Bioavailable Phosphonoamidate Prodrug, GS-9131. Antimicrobial Agents and Chemotherapy, 2008, 52, 655-665.	3.2	93
27	Mechanism for Effective Lymphoid Cell and Tissue Loading Following Oral Administration of Nucleotide Prodrug GS-7340. Molecular Pharmaceutics, 2013, 10, 459-466.	4.6	93
28	Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Molecular Pharmaceutics, 2015, 12, 4301-4310.	4.6	79
29	Molecular Assessment of the Potential for Renal Drug Interactions between Tenofovir and HIV Protease Inhibitors. Antiviral Therapy, 2007, 12, 267-272.	1.0	76
30	Probing the Molecular Mechanisms of AZT Drug Resistance Mediated by HIV-1 Reverse Transcriptase Using a Transient Kinetic Analysisâ€. Biochemistry, 2003, 42, 8831-8841.	2.5	75
31	GS-9219—A Novel Acyclic Nucleotide Analogue with Potent Antineoplastic Activity in Dogs with Spontaneous Non–Hodgkin's Lymphoma. Clinical Cancer Research, 2008, 14, 2824-2832.	7.0	74
32	6-(Het)aryl-7-Deazapurine Ribonucleosides as Novel Potent Cytostatic Agents. Journal of Medicinal Chemistry, 2010, 53, 460-470.	6.4	73
33	A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. Aids, 2005, 19, 1751-1760.	2.2	70
34	Natural Substrate Concentrations Can Modulate the Prophylactic Efficacy of Nucleotide HIV Reverse Transcriptase Inhibitors. Journal of Virology, 2011, 85, 6610-6617.	3.4	69
35	The K65R Reverse Transcriptase Mutation in HIV-1 Reverses the Excision Phenotype of Zidovudine Resistance Mutations. Antiviral Therapy, 2006, 11, 155-163.	1.0	69
36	Role of Mitochondrial RNA Polymerase in the Toxicity of Nucleotide Inhibitors of Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2016, 60, 806-817.	3.2	68

#	Article	IF	CITATIONS
37	Evaluation of the Endothelin Receptor Antagonists Ambrisentan, Bosentan, Macitentan, and Sitaxsentan as Hepatobiliary Transporter Inhibitors and Substrates in Sandwich-Cultured Human Hepatocytes. PLoS ONE, 2014, 9, e87548.	2.5	63
38	<i>In Vitro</i> Evaluation of the Anti-HIV Activity and Metabolic Interactions of Tenofovir and Emtricitabine. Antiviral Therapy, 2006, 11, 377-384.	1.0	60
39	Synthesis and anti-HIV activity of CS-9148 (2′-Fd4AP), a novel nucleoside phosphonate HIV reverse transcriptase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1120-1123.	2.2	58
40	Intracellular Metabolism of the Nucleotide Prodrug GS-9131, a Potent Anti-Human Immunodeficiency Virus Agent. Antimicrobial Agents and Chemotherapy, 2008, 52, 648-654.	3.2	58
41	Assessment of CS-9219 in a Pet Dog Model of Non-Hodgkin's Lymphoma. Clinical Cancer Research, 2009, 15, 3503-3510.	7.0	58
42	Design, synthesis, and anti-HIV activity of 4′-modified carbocyclic nucleoside phosphonate reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 1739-1746.	3.0	58
43	Discovery of CS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor CS-9148. Bioorganic and Medicinal Chemistry, 2010, 18, 3606-3617.	3.0	57
44	Mechanistic Studies to Understand the Progressive Development of Resistance in Human Immunodeficiency Virus Type 1 Reverse Transcriptase to Abacavir. Journal of Biological Chemistry, 2002, 277, 40479-40490.	3.4	56
45	Simultaneous quantitation of the nucleotide analog adefovir, its phosphorylated anabolites and 2′-deoxyadenosine triphosphate by ion-pairing LC/MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 848, 335-343.	2.3	54
46	Renal drug–drug interactions: what we have learned and where we are going. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 433-448.	3.3	54
47	Novel Nucleotide Human Immunodeficiency Virus Reverse Transcriptase Inhibitor GS-9148 with a Low Nephrotoxic Potential: Characterization of Renal Transport and Accumulation. Antimicrobial Agents and Chemotherapy, 2009, 53, 150-156.	3.2	52
48	Nucleotide Analogue Prodrug Tenofovir Disoproxil Enhances Lymphoid Cell Loading following Oral Administration in Monkeys. Molecular Pharmaceutics, 2009, 6, 1145-1151.	4.6	52
49	Visualizing the Molecular Interactions of a Nucleotide Analog, CS-9148, with HIV-1 Reverse Transcriptase–DNA Complex. Journal of Molecular Biology, 2010, 397, 967-978.	4.2	48
50	Transporter Expression in Noncancerous and Cancerous Liver Tissue from Donors with Hepatocellular Carcinoma and Chronic Hepatitis C Infection Quantified by LC-MS/MS Proteomics. Drug Metabolism and Disposition, 2018, 46, 189-196.	3.3	43
51	Insights into the Molecular Mechanism of Inhibition and Drug Resistance for HIV-1 RT with Carbovir Triphosphateâ€. Biochemistry, 2002, 41, 5150-5162.	2.5	42
52	Evaluation of the Effect of Cobicistat on the <i>In Vitro</i> Renal Transport and Cytotoxicity Potential of Tenofovir. Antimicrobial Agents and Chemotherapy, 2013, 57, 4982-4989.	3.2	41
53	Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620. Antimicrobial Agents and Chemotherapy, 2014, 58, 1943-1951.	3.2	40
54	Application of kinase bypass strategies to nucleoside antivirals. Antiviral Research, 2011, 92, 277-291.	4.1	39

#	Article	IF	CITATIONS
55	Inhibition of Hepatitis C Virus Replication by GS-6620, a Potent <i>C</i> -Nucleoside Monophosphate Prodrug. Antimicrobial Agents and Chemotherapy, 2014, 58, 1930-1942.	3.2	38
56	GS-9191 Is a Novel Topical Prodrug of the Nucleotide Analog 9-(2-Phosphonylmethoxyethyl)Guanine with Antiproliferative Activity and Possible Utility in the Treatment of Human Papillomavirus Lesions. Antimicrobial Agents and Chemotherapy, 2009, 53, 2777-2784.	3.2	37
57	Synthesis and characterization of 2′-C-Me branched C-nucleosides as HCV polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4127-4132.	2.2	37
58	Novel Use of a Guanosine Prodrug Approach To Convert 2',3'-Didehydro-2',3'-Dideoxyguanosine into a Viable Antiviral Agent. Antimicrobial Agents and Chemotherapy, 2002, 46, 887-891.	3.2	36
59	Effective metabolism and long intracellular half life of the anti-Hepatitis B agent adefovir in hepatic cells. Biochemical Pharmacology, 2004, 68, 1825-1831.	4.4	36
60	Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antiviral Therapy, 2007, 12, 267-72.	1.0	33
61	Pharmacokinetics of cobicistat boostedâ€elvitegravir administered in combination with rosuvastatin. Journal of Clinical Pharmacology, 2014, 54, 649-656.	2.0	32
62	Synthesis, anti-HIV activity, and resistance profiles of ribose modified nucleoside phosphonates. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6785-6789.	2.2	31
63	Intracellular interactions between nucleos(t)ide inhibitors of HIV reverse transcriptase. AIDS Reviews, 2005, 7, 113-25.	1.0	31
64	Interaction of 2,4-Diaminopyrimidine–Containing Drugs Including Fedratinib and Trimethoprim with Thiamine Transporters. Drug Metabolism and Disposition, 2017, 45, 76-85.	3.3	30
65	Lack of a Metabolic and Antiviral Drug Interaction between Tenofovir, Abacavir and Lamivudine. Antiviral Therapy, 2005, 10, 451-457.	1.0	30
66	Sofosbuvir and Ribavirin Liver Pharmacokinetics in Patients Infected with Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	29
67	Renal Transporterâ€Mediated Drugâ€Drug Interactions: Are They Clinically Relevant?. Journal of Clinical Pharmacology, 2016, 56, S73-81.	2.0	28
68	Chemoprophylaxis With Oral Emtricitabine and Tenofovir Alafenamide Combination Protects Macaques From Rectal Simian/Human Immunodeficiency Virus Infection. Journal of Infectious Diseases, 2016, 214, 1058-1062.	4.0	28
69	A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenetics and Genomics, 2015, 25, 82-92.	1.5	27
70	Synthesis and anti-HIV activity of 2′-fluorine modified nucleoside phosphonates: Analogs of GS-9148. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1116-1119.	2.2	26
71	Interactions of enantiomers of 2′,3′-didehydro-2′,3′-dideoxy-fluorocytidine with wild type and M184V mutant HIV-1 reverse transcriptase. Antiviral Research, 2002, 56, 189-205.	4.1	24
72	Metabolic Activation of the Anti-Hepatitis C Virus Nucleotide Prodrug PSI-352938. Antimicrobial Agents and Chemotherapy, 2012, 56, 3767-3775.	3.2	24

#	Article	IF	CITATIONS
73	Probing the Mechanistic Consequences of 5-Fluorine Substitution on Cytidine Nucleotide Analogue Incorporation by HIV-1 Reverse Transcriptase. Antiviral Chemistry and Chemotherapy, 2003, 14, 115-125.	0.6	22
74	Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 1075-1087.	3.3	20
75	GS-9219/VDC-1101 - a prodrug of the acyclic nucleotide PMEG has antitumor activity inspontaneous canine multiple myeloma. BMC Veterinary Research, 2014, 10, 30.	1.9	19
76	Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development. Chemical Research in Toxicology, 2016, 29, 545-563.	3.3	18
77	Tenofovir alafenamide (TAF) does not deplete mitochondrial DNA in human T-cell lines at intracellular concentrations exceeding clinically relevant drug exposures. Antiviral Research, 2017, 140, 116-120.	4.1	18
78	Effect of Nucleoside and Nucleotide Reverse Transcriptase Inhibitors of HIV on Endogenous Nucleotide Pools. Antiviral Therapy, 2008, 13, 789-797.	1.0	17
79	Intracellular Nucleotide Levels during Coadministration of Tenofovir Disoproxil Fumarate and Didanosine in HIV-1-Infected Patients. Antimicrobial Agents and Chemotherapy, 2011, 55, 1549-1555.	3.2	15
80	HCV NS5B polymerase inhibitors. Current Opinion in Drug Discovery & Development, 2010, 13, 441-65.	1.9	15
81	Investigating the effects of stereochemistry on incorporation and removal of 5-fluorocytidine analogs by mitochondrial DNA polymerase gamma: comparison of d- and l-D4FC-TP. Antiviral Research, 2004, 62, 57-64.	4.1	14
82	MECHANISTIC STUDIES TO UNDERSTAND THE INHIBITION OF WILD TYPE AND MUTANT HIV-1 REVERSE TRANSCRIPTASE BY CARBOVIR-TRIPHOSPHATE. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1247-1250.	1.1	11
83	Preparation and biological evaluation of 1′-cyano-2′-C-methyl pyrimidine nucleosides as HCV NS5B polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3092-3095.	2.2	11
84	Species differences in liver accumulation and metabolism of nucleotide prodrug sofosbuvir. Drug Metabolism and Pharmacokinetics, 2020, 35, 334-340.	2.2	11
85	Effect of nucleoside and nucleotide reverse transcriptase inhibitors of HIV on endogenous nucleotide pools. Antiviral Therapy, 2008, 13, 789-97.	1.0	11
86	Targeting DNA Repair in Chronic Lymphocytic Leukemia Cells with a Novel Acyclic Nucleotide Analogue, GS-9219. Clinical Cancer Research, 2009, 15, 3760-3769.	7.0	10
87	Compared to Subcutaneous Tenofovir, Oral Tenofovir Disoproxyl Fumarate Administration Preferentially Concentrates the Drug into Gut-Associated Lymphoid Cells in Simian Immunodeficiency Virus-Infected Macaques. Antimicrobial Agents and Chemotherapy, 2012, 56, 4980-4984.	3.2	10
88	Unlikely Association of Multidrugâ€Resistance Protein 2 Singleâ€Nucleotide Polymorphisms with Tenofovirâ€Induced Renal Adverse Events. Journal of Infectious Diseases, 2007, 195, 1389-1390.	4.0	9
89	Evaluation of 2′-α-fluorine modified nucleoside phosphonates as potential inhibitors of HCV polymerase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3354-3357.	2.2	9
90	Lack of a metabolic and antiviral drug interaction between tenofovir, abacavir and lamivudine. Antiviral Therapy, 2005, 10, 451-7.	1.0	9

#	Article	IF	CITATIONS
91	2 ′ ,3 ′ -Didehydro-2 ′ ,3 ′ -dideoxynucleosides are degraded to furfuryl alcohol under acidic conditions. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2159-2162.	2.2	7
92	Bifunctional inhibition of HIV-1 reverse transcriptase: A first step in designing a bifunctional triphosphate. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1511-1518.	2.2	7
93	Discovery of a 2′-fluoro-2′- C -methyl C -nucleotide HCV polymerase inhibitor and a phosphoramidate prodrug with favorable properties. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1840-1847.	2.2	7
94	Role of Mitochondrial Toxicity in BMS-986094-Induced Toxicity. Toxicological Sciences, 2017, 155, 2-2.	3.1	7
95	Viability of primary osteoblasts after treatment with tenofovir alafenamide: Lack of cytotoxicity at clinically relevant drug concentrations. PLoS ONE, 2017, 12, e0169948.	2.5	7
96	Synthesis of 1′-C-Cyano Pyrimidine Nucleosides and Characterization as HCV Polymerase Inhibitors. Nucleosides, Nucleotides and Nucleic Acids, 2015, 34, 763-785.	1.1	6
97	Nucleotide Prodrug Containing a Nonproteinogenic Amino Acid To Improve Oral Delivery of a Hepatitis C Virus Treatment. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	6
98	Mechanism of Anti-Human Immunodeficiency Virus Activity of β- d -6-Cyclopropylamino-2′,3′-Didehydro-2′,3′-Dideoxyguanosine. Antimicrobial Agents and Chemotherapy 2005, 49, 1994-2001.	1,3.2	5
99	HCV RdRp, sofosbuvir and beyond. The Enzymes, 2021, 49, 63-82.	1.7	5
100	Interaction of 2′-deoxyguanosine Triphosphate Analogue Inhibitors of HIV Reverse Transcriptase with Human Mitochondrial DNA Polymerase γ. Antiviral Chemistry and Chemotherapy, 2007, 18, 25-33.	0.6	4
101	Synthesis and characterization of 1′-C-cyano-2′-fluoro-2′-C-methyl pyrimidine nucleosides as HCV polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1040-1043.	2.2	3

102 Metabolism of Antiviral Nucleosides and Nucleotides. , 0, , 301-315.