
Linfu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4074420/publications.pdf Version: 2024-02-01

LINEULI

#	Article	IF	CITATIONS
1	The Key Roles of GSK-3β in Regulating Mitochondrial Activity. Cellular Physiology and Biochemistry, 2017, 44, 1445-1459.	1.6	148
2	The Multifunctional Effects of Nobiletin and Its Metabolites <i>In Vivo</i> and <i>In Vitro</i> . Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-14.	1.2	98
3	Insights on Biology and Pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-Catenin, and NF-κB Pathways in Osteoarthritis. Current Pharmaceutical Design, 2012, 18, 3293-3312.	1.9	81
4	Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food and Function, 2020, 11, 8472-8492.	4.6	52
5	Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. Journal of Cancer, 2019, 10, 2035-2046.	2.5	43
6	Insights into the Action Mechanisms of Traditional Chinese Medicine in Osteoarthritis. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-13.	1.2	39
7	The Natural Occurring Compounds Targeting Endoplasmic Reticulum Stress. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-13.	1.2	37
8	The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. Journal of Agricultural and Food Chemistry, 2019, 67, 11288-11306.	5.2	35
9	The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Medicinal Chemistry, 2018, 10, 795-809.	2.3	23
10	<p>TMF inhibits miR-29a/Wnt/β-catenin signaling through upregulating Foxo3a activity in osteoarthritis chondrocytes</p> . Drug Design, Development and Therapy, 2019, Volume 13, 2009-2019.	4.3	23
11	Geniposide Ameliorated Dexamethasone-Induced Cholesterol Accumulation in Osteoblasts by Mediating the GLP-1R/ABCA1 Axis. Cells, 2021, 10, 3424.	4.1	17
12	Geniposide ameliorated dexamethasone-induced endoplasmic reticulum stress and mitochondrial apoptosis in osteoblasts. Journal of Ethnopharmacology, 2022, 291, 115154.	4.1	16
13	<p>Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1057-1081.	4.3	15
14	5,7,3â€2,4â€2-Tetramethoxyflavone exhibits chondroprotective activity by targeting β-catenin signaling in vivo and in vitro. Biochemical and Biophysical Research Communications, 2014, 452, 682-688.	2.1	14
15	The Roles of Endoplasmic Reticulum Stress in the Pathophysiological Development of Cartilage and Chondrocytes. Current Pharmaceutical Design, 2017, 23, 1693-1704.	1.9	13
16	5,7,3′,4′-Tetramethoxyflavone protects chondrocytes from ER stress-induced apoptosis through regulation of the IRE1α pathway. Connective Tissue Research, 2018, 59, 157-166.	2.3	10
17	TMF protects chondrocytes from ER stress-induced apoptosis by down-regulating GSK-3Î ² . Biomedicine and Pharmacotherapy, 2017, 89, 1262-1268.	5.6	8
18	The roles of post-translational modifications and coactivators of STAT6 signaling in tumor growth and progression. Future Medicinal Chemistry, 2020, 12, 1945-1960.	2.3	7

Linfu Li

#	Article	IF	CITATIONS
19	Chondroprotective Activity of <i>Murraya exotica</i> through Inhibiting <i>β</i> -Catenin Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-8.	1.2	6
20	The Chondroprotective Role of TMF in PGE ₂ -Induced Apoptosis Associating with Endoplasmic Reticulum Stress. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.	1.2	6
21	Oxysophocarpine protects airway epithelial cells against inflammation and apoptosis by inhibiting miR-155 expression. Future Medicinal Chemistry, 2020, 12, 1475-1487.	2.3	5
22	Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. American Journal of Cancer Research, 2021, 11, 3445-3460.	1.4	2
23	5,7,3′,4′-tetramethoxyflavone amelioratesÂcholesterol dysregulation by mediating SIRT1/FOXO3a/ABCA1 signaling in osteoarthritis chondrocytes. Future Medicinal Chemistry, 2021, 13, 2153-2166.	2.3	1