
Andrew D Greentree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4074121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum phase transitions of light. Nature Physics, 2006, 2, 856-861.	16.7	662
2	Diamond photonics. Nature Photonics, 2011, 5, 397-405.	31.4	532
3	Room-temperature coherent coupling of single spins in diamond. Nature Physics, 2006, 2, 408-413.	16.7	496
4	Diamond-based single-photon emitters. Reports on Progress in Physics, 2011, 74, 076501.	20.1	462
5	Stark Shift Control of Single Optical Centers in Diamond. Physical Review Letters, 2006, 97, 083002.	7.8	261
6	Coherent electronic transfer in quantum dot systems using adiabatic passage. Physical Review B, 2004, 70, .	3.2	247
7	Coherent Population Trapping of Single Spins in Diamond under Optical Excitation. Physical Review Letters, 2006, 97, 247401.	7.8	235
8	Two-dimensional architectures for donor-based quantum computing. Physical Review B, 2006, 74, .	3.2	209
9	Electrostatically defined serial triple quantum dot charged with few electrons. Physical Review B, 2007, 76, .	3.2	170
10	Ion-Beam-Assisted Lift-Off Technique for Three-Dimensional Micromachining of Freestanding Single-Crystal Diamond. Advanced Materials, 2005, 17, 2427-2430.	21.0	166
11	Numerical ordering of zero in honey bees. Science, 2018, 360, 1124-1126.	12.6	145
12	Two-Level Ultrabright Single Photon Emission from Diamond Nanocrystals. Nano Letters, 2009, 9, 3191-3195.	9.1	132
13	Fabrication of Ultrathin Singleâ€Crystal Diamond Membranes. Advanced Materials, 2008, 20, 4793-4798.	21.0	129
14	Photochromism in single nitrogen-vacancy defect in diamond. Applied Physics B: Lasers and Optics, 2006, 82, 243-246.	2.2	125
15	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	14.6	122
16	Diamond for Quantum Computing. Science, 2008, 320, 1601-1602.	12.6	120
17	Single-Photon Emission and Quantum Characterization of Zinc Oxide Defects. Nano Letters, 2012, 12, 949-954.	9.1	118
18	Creating diamond color centers for quantum optical applications. Diamond and Related Materials, 2007, 16, 1887-1895.	3.9	113

#	Article	IF	CITATIONS
19	Dynamic Stabilization of the Optical Resonances of Single Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2012, 108, 206401.	7.8	113
20	Diamond integrated quantum photonics. Materials Today, 2008, 11, 22-31.	14.2	109
21	Chromium single-photon emitters in diamond fabricated by ion implantation. Physical Review B, 2010, 81, .	3.2	97
22	Coherent population trapping in diamond N-V centers at zero magnetic field. Optics Express, 2006, 14, 7986.	3.4	94
23	Characterization of three-dimensional microstructures in single-crystal diamond. Diamond and Related Materials, 2006, 15, 1614-1621.	3.9	92
24	Architectural design for a topological cluster state quantum computer. New Journal of Physics, 2009, 11, 083032.	2.9	84
25	Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. Journal of Applied Physics, 2011, 109, .	2.5	84
26	Numerical cognition in honeybees enables addition and subtraction. Science Advances, 2019, 5, eaav0961.	10.3	84
27	Diamond in Tellurite Glass: a New Medium for Quantum Information. Advanced Materials, 2011, 23, 2806-2810.	21.0	82
28	Spatial coherent transport of interacting dilute Bose gases. Physical Review A, 2008, 77, .	2.5	80
29	Maximizing the Hilbert Space for a Finite Number of Distinguishable Quantum States. Physical Review Letters, 2004, 92, 097901.	7.8	76
30	Global control and fast solid-state donor electron spin quantum computing. Physical Review B, 2005, 72, .	3.2	76
31	Towards a picosecond transform-limited nitrogen-vacancy based single photon source. Optics Express, 2008, 16, 6240.	3.4	76
32	Mechanism for the Amorphisation of Diamond. Advanced Materials, 2012, 24, 2024-2029.	21.0	74
33	Fractional Quantum Hall Physics in Jaynes-Cummings-Hubbard Lattices. Physical Review Letters, 2012, 108, 223602.	7.8	73
34	Enhanced single-photon emission in the near infrared from a diamond color center. Physical Review B, 2009, 79, .	3.2	71
35	Photophysics of chromium-related diamond single-photon emitters. Physical Review A, 2010, 81, .	2.5	71
36	Quantum phase transitions in photonic cavities with two-level systems. Physical Review A, 2008, 77, .	2.5	68

#	Article	IF	CITATIONS
37	Spatial adiabatic passage: a review of recent progress. Reports on Progress in Physics, 2016, 79, 074401.	20.1	68
38	Photonic module: An on-demand resource for photonic entanglement. Physical Review A, 2007, 76, .	2.5	65
39	Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature. Carbon, 2019, 143, 714-719.	10.3	65
40	Identifying an experimental two-state Hamiltonian to arbitrary accuracy. Physical Review A, 2005, 71, .	2.5	64
41	Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Applied Physics Letters, 2005, 86, 134104.	3.3	64
42	Critical components for diamond-based quantum coherent devices. Journal of Physics Condensed Matter, 2006, 18, S825-S842.	1.8	64
43	Fabrication of single optical centres in diamond—a review. Journal of Luminescence, 2010, 130, 1646-1654.	3.1	63
44	Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications. ACS Applied Materials & Interfaces, 2018, 10, 8474-8484.	8.0	61
45	UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Scientific Reports, 2019, 9, 5345.	3.3	61
46	Progress in silicon-based quantum computing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1451-1471.	3.4	60
47	Stimulated emission from nitrogen-vacancy centres in diamond. Nature Communications, 2017, 8, 14000.	12.8	60
48	Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits <i>Staphylococcus aureus</i> Colonization. ACS Applied Materials & Interfaces, 2019, 11, 24588-24597.	8.0	60
49	Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs. Optics Express, 2009, 17, 6465.	3.4	56
50	Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale, 2017, 9, 497-502.	5.6	56
51	Quantum gate forQswitching in monolithic photonic-band-gap cavities containing two-level atoms. Physical Review A, 2006, 73, .	2.5	54
52	Constructive control of quantum systems using factorization of unitary operators. Journal of Physics A, 2002, 35, 8315-8339.	1.6	53
53	Diamond-based structures to collect and guide light. New Journal of Physics, 2011, 13, 025020.	2.9	53
54	Depletion of nitrogen-vacancy color centers in diamond via hydrogen passivation. Applied Physics Letters, 2012, 100, .	3.3	53

#	Article	IF	CITATIONS
55	A highly efficient two level diamond based single photon source. Applied Physics Letters, 2009, 94, 203107.	3.3	52
56	Spatial adiabatic passage in a realistic triple well structure. Physical Review B, 2008, 77, .	3.2	51
57	Resonant and off-resonant transients in electromagnetically induced transparency: Turn-on and turn-off dynamics. Physical Review A, 2002, 65, .	2.5	48
58	Reconfigurable quantum metamaterials. Optics Express, 2011, 19, 11018.	3.4	45
59	Facile One-Pot Synthesis of Nanodot-Decorated Gold–Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Interfaces, 2018, 10, 32526-32535.	8.0	45
60	Deterministic optical quantum computer using photonic modules. Physical Review A, 2008, 78, .	2.5	44
61	Magnetically sensitive nanodiamond-doped tellurite glass fibers. Scientific Reports, 2018, 8, 1268.	3.3	44
62	Quantum-information transport to multiple receivers. Physical Review A, 2006, 73, .	2.5	43
63	Flower Colours through the Lens: Quantitative Measurement with Visible and Ultraviolet Digital Photography. PLoS ONE, 2014, 9, e96646.	2.5	43
64	High-speed quantum gates with cavity quantum electrodynamics. Physical Review A, 2008, 78, .	2.5	42
65	Linearisation of RGB Camera Responses for Quantitative Image Analysis of Visible and UV Photography: A Comparison of Two Techniques. PLoS ONE, 2013, 8, e79534.	2.5	41
66	Prospects for photon blockade in four-level systems in the N configuration with more than one atom. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 252-259.	1.4	37
67	Observations of a doubly driven V system probed to a fourth level in laser-cooled rubidium. Physical Review A, 2001, 64, .	2.5	37
68	Nickel related optical centres in diamond created by ion implantation. Journal of Applied Physics, 2010, 107, .	2.5	37
69	Sensitive and Multiplexed SERS Nanotags for the Detection of Cytokines Secreted by Lymphoma. ACS Sensors, 2019, 4, 2507-2514.	7.8	37
70	Time evolution of the one-dimensional Jaynes-Cummings-Hubbard Hamiltonian. Physical Review A, 2009, 80, .	2.5	36
71	Laser threshold magnetometry. New Journal of Physics, 2016, 18, 013015.	2.9	36
72	Slot-waveguide cavities for optical quantum information applications. Optics Express, 2009, 17, 7295.	3.4	34

#	Article	IF	CITATIONS
73	High-performance diamond-based single-photon sources for quantum communication. Physical Review A, 2009, 80, .	2.5	34
74	Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system. Physical Review A, 2012, 85, .	2.5	33
75	Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5, 73.	3.0	33
76	Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Applied Physics Letters, 2005, 86, 143117.	3.3	32
77	Identifying a two-state Hamiltonian in the presence of decoherence. Physical Review A, 2006, 73, .	2.5	32
78	Producing optimized ensembles of nitrogen-vacancy color centers for quantum information applications. Journal of Applied Physics, 2009, 106, .	2.5	32
79	21^st-Century Applications of Nanodiamonds. Optics and Photonics News, 2010, 21, 20.	0.5	32
80	Development of a Templated Approach to Fabricate Diamond Patterns on Various Substrates. ACS Applied Materials & Interfaces, 2014, 6, 8894-8902.	8.0	31
81	Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics, 2018, 3, .	5.7	31
82	A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory. Scientific Reports, 2017, 7, 9775.	3.3	30
83	Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms. Physical Review A, 2003, 67, .	2.5	29
84	Diamond as a scaffold for bone growth. Journal of Materials Science: Materials in Medicine, 2013, 24, 849-861.	3.6	29
85	Band structure, phase transitions, and semiconductor analogs in one-dimensional solid light systems. Physical Review A, 2009, 80, .	2.5	28
86	Nanodiamond-polycaprolactone composite: A new material for tissue engineering with sub-dermal imaging capabilities. Materials Letters, 2016, 185, 185-188.	2.6	28
87	Honeybees prefer novel insect-pollinated flower shapes over bird-pollinated flower shapes. Environmental Epigenetics, 2019, 65, 457-465.	1.8	28
88	Symbolic representation of numerosity by honeybees (<i>Apis mellifera</i>): matching characters to small quantities. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190238.	2.6	28
89	Atomistic simulations of adiabatic coherent electron transport in triple donor systems. Physical Review B, 2009, 80, .	3.2	27
90	Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4, 2608.	3.0	27

#	Article	IF	CITATIONS
91	Splitting of photoluminescent emission from nitrogen–vacancy centers in diamond induced by ion-damage-induced stress. New Journal of Physics, 2013, 15, 043027.	2.9	26
92	Coherent tunneling adiabatic passage with the alternating coupling scheme. Nanotechnology, 2009, 20, 405402.	2.6	25
93	An upper limit on the lateral vacancy diffusion length in diamond. Diamond and Related Materials, 2012, 24, 6-10.	3.9	25
94	Nearâ€Surface Spectrally Stable Nitrogen Vacancy Centres Engineered in Single Crystal Diamond. Advanced Materials, 2012, 24, 3333-3338.	21.0	25
95	Fifty years of Jaynes–Cummings physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 220201.	1.5	25
96	Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees. Journal of Experimental Biology, 2019, 222, .	1.7	24
97	3D-Printed Diamond–Titanium Composite: A Hybrid Material for Implant Engineering. ACS Applied Bio Materials, 2020, 3, 29-36.	4.6	24
98	Fluorescent diamond microparticle doped glass fiber for magnetic field sensing. APL Materials, 2020, 8, .	5.1	24
99	Top-down pathways to devices with few and single atoms placed to high precision. New Journal of Physics, 2010, 12, 065016.	2.9	23
100	Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19, 16182.	3.4	23
101	Coupling light and sound: giant nonlinearities from oscillating bubbles and droplets. Nanophotonics, 2019, 8, 367-390.	6.0	23
102	Quantum-dot cellular automata using buried dopants. Physical Review B, 2005, 71, .	3.2	22
103	Electrical readout of a spin qubit without double occupancy. Physical Review B, 2005, 71, .	3.2	22
104	Direct measurement and modelling of internal strains in ion-implanted diamond. Journal of Physics Condensed Matter, 2013, 25, 385403.	1.8	22
105	Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage. Optics Express, 2012, 20, 23108.	3.4	21
106	Optical cryocooling of diamond. Physical Review B, 2017, 95, .	3.2	21
107	Probing a doubly driven two-level atom. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 240-244.	1.4	20
108	Polychromatic excitation of a two-level system. Physical Review A, 1999, 59, 4083-4086.	2.5	20

#	Article	IF	CITATIONS
109	Observation of transient gain without population inversion in a laser-cooled rubidiumĥsystem. Physical Review A, 2001, 64, .	2.5	20
110	Coalitions in the quantum Minority game: Classical cheats and quantum bullies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 362, 132-137.	2.1	20
111	Coherent electron transport by adiabatic passage in an imperfect donor chain. Physical Review B, 2010, 82, .	3.2	20
112	Spontaneous quantity discrimination of artificial flowers by foraging honeybees. Journal of Experimental Biology, 2020, 223, .	1.7	20
113	Tailoring the optical constants of diamond by ion implantation. Optical Materials Express, 2012, 2, 644.	3.0	19
114	Digital three-state adiabatic passage. Physical Review A, 2013, 87, .	2.5	19
115	Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22, 11301.	3.4	19
116	Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity. Nanophotonics, 2020, 9, 4505-4518.	6.0	18
117	Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles. Scientific Reports, 2020, 10, 1501.	3.3	17
118	Interferometry using spatial adiabatic passage in quantum dot networks. Physical Review B, 2010, 81, .	3.2	16
119	Optically induced spin-to-charge transduction in donor-spin readout. Physical Review B, 2005, 72, .	3.2	15
120	Information Free Quantum Bus for Generating Stabiliser States. Quantum Information Processing, 2007, 6, 229-242.	2.2	15
121	Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield. Nanoscale, 2017, 9, 9299-9304.	5.6	15
122	Refractive index variation in a free-standing diamond thin film induced by irradiation with fully transmitted high-energy protons. Scientific Reports, 2017, 7, 385.	3.3	15
123	Single photon quantum non-demolition measurements in the presence of inhomogeneous broadening. New Journal of Physics, 2009, 11, 093005.	2.9	14
124	A little diamond goes a long way. Nature Photonics, 2010, 4, 202-203.	31.4	14
125	Spin Guides and Spin Splitters: Waveguide Analogies in One-Dimensional Spin Chains. Physical Review Letters, 2012, 108, 017207.	7.8	14
126	Adiabatic two-photon quantum gate operations using a long-range photonic bus. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 055503.	1.5	14

#	Article	IF	CITATIONS
127	High-speed quantum networking by ship. Scientific Reports, 2016, 6, 36163.	3.3	14
128	Dynamically reconfigurable plasmon resonances enabled by capillary oscillations of liquid-metal nanodroplets. Physical Review A, 2017, 96, .	2.5	14
129	Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7713-7718.	7.1	14
130	Charge shelving and bias spectroscopy for the readout of a charge qubit on the basis of superposition states. Physical Review B, 2004, 70, .	3.2	13
131	Donor activation and damage in Si–SiO2from low-dose, low-energy ion implantation studied via electrical transport in MOSFETs. Semiconductor Science and Technology, 2005, 20, 363-368.	2.0	13
132	Interferometry using adiabatic passage in dilute-gas Bose-Einstein condensates. Physical Review A, 2012, 86, .	2.5	13
133	Plasmonic nanoantenna hydrophones. Scientific Reports, 2016, 6, 32892.	3.3	13
134	Nanodiamond arrays on glass for quantification and fluorescence characterisation. Scientific Reports, 2017, 7, 9252.	3.3	13
135	Achieving arithmetic learning in honeybees and examining how individuals learn. Communicative and Integrative Biology, 2019, 12, 166-170.	1.4	13
136	Pulse shaping by coupled cavities: Single photons and qudits. Physical Review A, 2009, 80, .	2.5	12
137	Long-range coupling of silicon photonic waveguides using lateral leakage and adiabatic passage. Optics Express, 2013, 21, 22705.	3.4	12
138	Dark-state adiabatic passage with spin-one particles. Physical Review A, 2014, 90, .	2.5	12
139	Magnetic-field-dependent stimulated emission from nitrogen-vacancy centers in diamond. Science Advances, 2022, 8, .	10.3	12
140	Optical properties of single crystal diamond microfilms fabricated by ion implantation and lift-off processing. Diamond and Related Materials, 2012, 21, 16-23.	3.9	11
141	Spin coherent quantum transport of electrons between defects in diamond. Nanophotonics, 2019, 8, 1975-1984.	6.0	11
142	Nearâ€Infrared Fluorescence from Silicon―and Nickelâ€Based Color Centers in Highâ€Pressure Highâ€Temperature Diamond Micro―and Nanoparticles. Advanced Optical Materials, 2020, 8, 2001047.	7.3	11
143	Optical Forces and Torques on Eccentric Nanoscale Core–Shell Particles. ACS Photonics, 2021, 8, 1103-1111.	6.6	11
144	Optical properties of neodymium ions in nanoscale regions of gallium nitride. Optical Materials Express, 2020, 10, 2614.	3.0	11

#	Article	IF	CITATIONS
145	Controlled phase gate for solid-state charge-qubit architectures. Physical Review A, 2005, 71, .	2.5	10
146	Robust charge-based qubit encoding. Physical Review B, 2005, 72, .	3.2	10
147	Very bright, near-infrared single photon emitters in diamond. APL Materials, 2013, 1, 032120.	5.1	10
148	Fluorescent Nanodiamonds Embedded in Poly-Îμ-Caprolactone Fibers as Biomedical Scaffolds. ACS Applied Nano Materials, 2020, 3, 10814-10822.	5.0	10
149	Highly uniform polycrystalline diamond coatings of three-dimensional structures. Surface and Coatings Technology, 2021, 408, 126815.	4.8	10
150	Proximal nitrogen reduces the fluorescence quantum yield of nitrogen-vacancy centres in diamond. New Journal of Physics, 2022, 24, 033053.	2.9	10
151	The effect of gallium implantation on the optical properties of diamond. Diamond and Related Materials, 2013, 35, 47-52.	3.9	9
152	Synthesis of discrete phase-coherent optical spectra from nonlinear ultrasound. Optics Express, 2017, 25, 7496.	3.4	9
153	Modelling single electron transfer in Si:P double quantum dots. Nanotechnology, 2005, 16, 74-81.	2.6	8
154	Einstein, von Frisch and the honeybee: a historical letter comes to light. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 449-456.	1.6	8
155	Spectroscopy of a Cooper-pair box in the Autler-Townes configuration. Physical Review B, 2006, 74, .	3.2	7
156	Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs. Optics Express, 2011, 19, 22219.	3.4	7
157	Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing. New Journal of Physics, 2016, 18, 021002.	2.9	7
158	Acoustically tunable optical transmission through a subwavelength hole with a bubble. Physical Review A, 2017, 95, .	2.5	7
159	Strengths of dressed states transitions. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 289-293.	1.4	6
160	Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot. Applied Physics Letters, 2003, 83, 4640-4642.	3.3	6
161	Multiplexing single electron transistors for application in scalable solid-state quantum computing. Applied Physics Letters, 2007, 90, 043109.	3.3	6
162	Breaking time reversal symmetry with light. Physics Magazine, 2010, 3, .	0.1	6

#	Article	IF	CITATIONS
163	Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1242-1249.	2.1	6
164	Guided magnon transport in spin chains: Transport speed and correcting for disorder. Physical Review A, 2015, 91, .	2.5	6
165	Atom–Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres. Scientific Reports, 2015, 5, 11486.	3.3	6
166	Guided magnonic Michelson interferometer. Scientific Reports, 2017, 7, 41472.	3.3	6
167	Surface-gate-defined single-electron transistor in a MoS ₂ bilayer. Nanotechnology, 2017, 28, 125203.	2.6	6
168	Quantum multilateration: Subdiffraction emitter pair localization via three spatially separate Hanbury Brown and Twiss measurements. Physical Review A, 2020, 101, .	2.5	6
169	Absorptive laser threshold magnetometry: combining visible diamond Raman lasers and nitrogen-vacancy centres. Materials for Quantum Technology, 2021, 1, 025003.	3.1	6
170	Single atom-scale diamond defect allows a large Aharonov-Casher phase. Physical Review A, 2009, 80, .	2.5	5
171	Hybrid Materials: Diamond in Tellurite Glass: a New Medium for Quantum Information (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	rgBT /Overloc
172	Parallel interaction-free measurement using spatial adiabatic passage. New Journal of Physics, 2011, 13, 125002.	2.9	5
173	Domain structures in quantum graphity. Physical Review D, 2012, 86, .	4.7	5
174	Transformation optics for cavity array metamaterials. Optics Express, 2013, 21, 5575.	3.4	5
175	Buried picolitre fluidic channels in single-crystal diamond. Proceedings of SPIE, 2013, , .	0.8	5
176	Negative refraction of excitations in the Bose-Hubbard model. Physical Review A, 2014, 90, .	2.5	5
177	Photoluminescence properties of praseodymium ions implanted into submicron regions in gallium nitride. Japanese Journal of Applied Physics, 2019, 58, 051011.	1.5	5
178	Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electronic Structure, 2019, 1, 015005.	2.8	5
179	Preferential coupling of diamond NV centres in step-index fibres. Optics Express, 2021, 29, 14425.	3.4	5
180	Two field nonlinear Faraday rotation in rubidium vapor in a Doppler-free geometry. Optics Communications, 2007, 276, 251-260.	2.1	4

#	Article	IF	CITATIONS
181	Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities. Physical Review A, 2010, 81, .	2.5	4
182	Energetics of the quantum graphity universe. Physical Review D, 2014, 90, .	4.7	4
183	Geometrogenesis under quantum graphity: Problems with the ripening universe. Physical Review D, 2015, 92, .	4.7	4
184	Digital waveguide adiabatic passage part 2: experiment. Optics Express, 2017, 25, 2552.	3.4	4
185	Reply to comment on Howard et al . (2019): â€~Nothing to dance about: unclear evidence for symbolic representations and numerical competence in honeybees'. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200095.	2.6	4
186	Analysis and Geometric Optimization of Single Electron Transistors for Read-Out in Solid-State Quantum Computing. Journal of Computational and Theoretical Nanoscience, 2005, 2, 214-226.	0.4	4
187	Scaling of coherent tunneling adiabatic passage in solid-state coherent quantum systems. , 2005, , .		3
188	Accessing diamond waveguides and future applications. , 2010, , .		3
189	Dark State Adiabatic Passage with Branched Networks and High-Spin Systems: Spin Separation and Entanglement. Frontiers in ICT, 2015, 2, .	3.6	3
190	Hybrid Diamond-Glass Optical Fibres for Magnetic Sensing. , 2018, , .		3
191	Photon-emitter dressed states in a closed waveguide. Physical Review A, 2021, 104, .	2.5	3
192	En route to nanoscopic quantum optical imaging: counting emitters with photon-number-resolving detectors. Optics Express, 2022, 30, 12495.	3.4	3
193	Numerosity Categorization by Parity in an Insect and Simple Neural Network. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	3
194	Optical manipulation of single spins in diamond. , 2007, , .		2
195	Microscopy as a statistical, Rényi-Ulam, half-lie game: a new heuristic search strategy to accelerate imaging. Scientific Reports, 2017, 7, 14652.	3.3	2
196	Digital waveguide adiabatic passage part 1: theory. Optics Express, 2017, 25, 5466.	3.4	2
197	Coupling slot-waveguide cavities for large-scale quantum optical devices. Optics Express, 2011, 19, 6354.	3.4	1
198	Optical fibre coated with diamond nanocrystal: Novel sensing architecture. , 2011, , .		1

12

#	Article	IF	CITATIONS
199	Common Principles in Learning from Bees through to Humans. Video Journal of Education and Pedagogy, 2019, 4, 184-201.	0.5	1
200	Near Infrared Photoluminescence of N _C V _{Si} ⁻ Centers in High-Purity Semi-Insulating 4H-SiC Irradiated with Energetic Charged Particles. Materials Science Forum, 0, 1004, 355-360.	0.3	1
201	Microwave quantum optics as a direct probe of the Overhauser field in a quantum dot circuit quantum electrodynamics device. Physical Review B, 2021, 103, .	3.2	1
202	Focussed electron beam induced deposition of platinum plasmonic antennae. , 2018, , .		1
203	Modal interferometric refractive index sensing in microstructured exposed core fibres. Optics Express, 2019, 27, 36269.	3.4	1
204	Transient nutation in a double resonance configuration: A dressed state description. Journal of Luminescence, 1995, 66-67, 61-64.	3.1	0
205	Optimizing single-electron transistors as electrometers for high-precision electrometry of charge on quantum dots. , 2005, , .		0
206	Measuring decoherence properties of charge qubits using buried donor cellular automata. , 2005, 5650, 504.		0
207	Single-spin detection and read-out for the solid-state quantum computer via resonant techniques. , 2005, , .		0
208	Fast donor-based electron spin quantum computing. , 2005, 5650, 44.		0
209	Toward quantum information processing using EIT in diamond. , 2006, , .		0
210	Qubit Transport and Fault-tolerant Architectures in Silicon. , 2006, , .		0
211	Coherent population trapping in diamond N-V centers at zero magnetic field. , 2006, , .		0
212	Compensation of ac Stark and Zeeman shifts in Doppler-free nonlinear Faraday rotation in rubidium vapor. , 2007, , .		0
213	Coherent Tunneling Adiabatic Passage with the alternating coupling scheme. , 2008, , .		0
214	Phase transitions in photonic cavities: Exact vs. mean-field. , 2008, , .		0
215	Cavity enhancement of a Nitrogen-Vacancy-based single photon source. , 2008, , .		0

216 Spatial adiabatic passage as a quantum wire. , 2008, , .

0

#	Article	IF	CITATIONS
217	Ultrahigh-Q microcavities in diamond-based photonic crystal slabs. , 2009, , .		Ο
218	Phase transitions in systems of interacting photons: quantum optics, quantum information, condensed matter and the Jaynes-Cummings-Hubbard model. Proceedings of SPIE, 2010, , .	0.8	0
219	Towards all-diamond optical devices. , 2010, , .		0
220	Towards hybrid diamond optical devices. , 2011, , .		0
221	Optomechanics with electromechanical parametric amplification. , 2011, , .		0
222	Engineering electromagnetic metamaterials from coupled cavity arrays. , 2011, , .		0
223	Optical Fibre With Embedded Diamond Nanocrystals: Towards a High Collection Efficiency, Waveguided Single Photon Source. , 2011, , .		0
224	Single photon emission from nanodiamond in tellurite glass. , 2011, , .		0
225	Electrostatic-Aharonov-Bohm-like interferometry with adiabatic passage in quantum dots. , 2011, , .		0
226	Recent progress in diamond photonics. , 2012, , .		0
227	Adiabatic optical bus for long-range coupling between silicon photonic waveguides. , 2014, , .		0
228	Diamond and Silicon Get Entangled. Physics Magazine, 2014, 7, .	0.1	0
229	Optical properties of neodymium ions in nanoscale regions of gallium nitride: erratum. Optical Materials Express, 2021, 11, 524.	3.0	0
230	Absorption spectra of the four level N system with two strong fields, in laser-cooled rubidium. , 2003, , 639-640.		0
231	Diamond in Glass, a New Platform for Quantum Photonics. , 2012, , .		0
232	Atom-Photon Coupling from Nitrogen-vacancy Centers Embedded in Tellurite Microspheres. , 2015, , .		0
233	Low-Loss Tellurite Fibers With Embedded Nanodiamonds. , 2015, , .		0
234	Quantum magnetic sensor using fibre-cavity diamond nitrogen-vacancy centre laser. , 2020, , .		0

#	Article	IF	CITATIONS
235	Diamond in fibre magnetometry: understanding the effects of step-index fibre design on dipole coupling. , 2020, , .		0