

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4073588/publications.pdf Version: 2024-02-01

XIIIE VII

#	Article	IF	CITATIONS
1	Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nature Genetics, 2006, 38, 1310-1315.	21.4	1,063
2	Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Molecular and Cellular Biology, 2007, 27, 3417-3428.	2.3	457
3	A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. Journal of Clinical Investigation, 2007, 117, 2684-2691.	8.2	390
4	Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1146-55.	7.1	318
5	Mutations that Cause Osteoglophonic Dysplasia Define Novel Roles for FGFR1 in Bone Elongation. American Journal of Human Genetics, 2005, 76, 361-367.	6.2	295
6	A Novel Recessive Mutation in Fibroblast Growth Factor-23 Causes Familial Tumoral Calcinosis. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2424-2427.	3.6	205
7	Analysis of the Biochemical Mechanisms for the Endocrine Actions of Fibroblast Growth Factor-23. Endocrinology, 2005, 146, 4647-4656.	2.8	192
8	Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone, 2005, 36, 971-977.	2.9	141
9	Skeletal abnormalities in neurofibromatosis type 1: Approaches to therapeutic options. American Journal of Medical Genetics, Part A, 2009, 149A, 2327-2338.	1.2	128
10	Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1–haploinsufficient osteoclast functions. Journal of Clinical Investigation, 2006, 116, 2880-2891.	8.2	118
11	FGF23 and disorders of phosphate homeostasis. Cytokine and Growth Factor Reviews, 2005, 16, 221-232.	7.2	113
12	Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone, 2005, 36, 793-802.	2.9	108
13	Interferon-Gamma-Mediated Osteoimmunology. Frontiers in Immunology, 2018, 9, 1508.	4.8	99
14	The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine and Growth Factor Reviews, 2020, 52, 88-98.	7.2	94
15	MicroRNAâ€10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Science, 2010, 101, 1997-2004.	3.9	88
16	MiR-335 Inhibits Small Cell Lung Cancer Bone Metastases via IGF-IR and RANKL Pathways. Molecular Cancer Research, 2014, 12, 101-110.	3.4	87
17	Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine and Growth Factor Reviews, 2019, 46, 36-44.	7.2	82
18	MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. International Journal of Molecular Sciences, 2016, 17, 349.	4.1	77

#	Article	IF	CITATIONS
19	MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine, 2014, 45, 302-310.	2.3	69
20	The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Frontiers in Endocrinology, 2019, 10, 69.	3.5	69
21	Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated (Review). Molecular Medicine Reports, 2015, 12, 783-794.	2.4	63
22	Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Research Reviews, 2021, 70, 101413.	10.9	62
23	MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro-Oncology, 2012, 14, 1007-1017.	1.2	56
24	Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients, 2017, 9, 506.	4.1	56
25	Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E929-E937.	3.5	52
26	Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α. Endocrine, 2015, 50, 239-249.	2.3	46
27	Bone Marrow Adipocyte: An Intimate Partner With Tumor Cells in Bone Metastasis. Frontiers in Endocrinology, 2018, 9, 339.	3.5	39
28	Interleukin-6 Knockout Inhibits Senescence of Bone Mesenchymal Stem Cells in High-Fat Diet-Induced Bone Loss. Frontiers in Endocrinology, 2020, 11, 622950.	3.5	39
29	Gut microbiota and bone metabolism. FASEB Journal, 2021, 35, e21740.	0.5	39
30	MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Molecular and Cellular Endocrinology, 2016, 437, 213-223.	3.2	35
31	Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics, 2017, 38, 406-424.	1.6	35
32	Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. Journal of Molecular Endocrinology, 2018, 60, 185-198.	2.5	34
33	Fibroblast Growth Factor 23 and Its Receptors. Therapeutic Apheresis and Dialysis, 2005, 9, 308-312.	0.9	31
34	Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Current Drug Targets, 2018, 20, 1-15.	2.1	31
35	Pro-Inflammatory Cytokines: New Potential Therapeutic Targets for Obesity-Related Bone Disorders. Current Drug Targets, 2017, 18, 1664-1675.	2.1	30
36	Bone turnover markers and novel biomarkers in lung cancer bone metastases. Biomarkers, 2018, 23, 518-526.	1.9	28

#	Article	IF	CITATIONS
37	Reduced femoral bone mass in both diet-induced and genetic hyperlipidemia mice. Bone, 2016, 93, 104-112.	2.9	27
38	Interleukin-17A Interweaves the Skeletal and Immune Systems. Frontiers in Immunology, 2020, 11, 625034.	4.8	27
39	Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss. Journal of Molecular Endocrinology, 2016, 57, 161-170.	2.5	19
40	Gut Microbiota and Serum Metabolic Signatures of High-Fat-Induced Bone Loss in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 788576.	3.9	19
41	Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development. Current Medicinal Chemistry, 2020, 27, 1151-1169.	2.4	18
42	Hyperactivation of mTOR critically regulates abnormal osteoclastogenesis in neurofibromatosis type 1. Journal of Orthopaedic Research, 2012, 30, 144-152.	2.3	17
43	Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Frontiers in Oncology, 2020, 10, 561595.	2.8	17
44	Management of bone metastasis with intravenous bisphosphonates in breast cancer: a systematic review and meta-analysis of dosing frequency. Supportive Care in Cancer, 2020, 28, 2533-2540.	2.2	17
45	Loss-of-function of SHARPIN causes an osteopenic phenotype in mice. Endocrine, 2011, 39, 104-112.	2.3	16
46	Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Research, 2016, 4, 16035.	11.4	16
47	<p>Lung Cancer Cells Derived Circulating miR-21 Promotes Differentiation of Monocytes into Osteoclasts</p> . OncoTargets and Therapy, 2020, Volume 13, 2643-2656.	2.0	15
48	MicroRNAs in Lung Cancer and Lung Cancer Bone Metastases: Biomarkers for Early Diagnosis and Targets for Treatment. Recent Patents on Anti-Cancer Drug Discovery, 2015, 10, 182-200.	1.6	14
49	Osteocalcin is inversely associated with glucose levels in middleâ€aged Tibetan men with different degrees of glucose tolerance. Diabetes/Metabolism Research and Reviews, 2014, 30, 476-482.	4.0	12
50	High-Fat Diet Induces Distinct Metabolic Response in Interleukin-6 and Tumor Necrosis Factor-α Knockout Mice. Journal of Interferon and Cytokine Research, 2016, 36, 580-588.	1.2	12
51	MicroRNA-17-92 Regulates Beta-Cell Restoration After Streptozotocin Treatment. Frontiers in Endocrinology, 2020, 11, 9.	3.5	12
52	High Fructose and High Fat Exert Different Effects on Changes in Trabecular Bone Micro-structure. Journal of Nutrition, Health and Aging, 2018, 22, 361-370.	3.3	11
53	Bone marrow adipocytes enhance osteolytic bone destruction by activating 1q21.3(S100A7/8/9-IL6R)-TLR4 pathway in lung cancer. Journal of Cancer Research and Clinical Oncology, 2020, 146, 2241-2253.	2.5	11
54	Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. Journal of Molecular Medicine, 2022, 100, 167-183.	3.9	11

#	Article	IF	CITATIONS
55	Skeletal-related adverse events during bone metastasis of breast cancer: current status. Discovery Medicine, 2019, 27, 211-220.	0.5	11
56	Neurofibromatosis Type 1 Gene Haploinsufficiency Reduces AP-1 Gene Expression without Abrogating the Anabolic Effect of Parathyroid Hormone. Calcified Tissue International, 2006, 78, 162-170.	3.1	10
57	Alcoholism and Osteoimmunology. Current Medicinal Chemistry, 2021, 28, 1815-1828.	2.4	10
58	A novel animal model for bone metastasis in human lung cancer. Oncology Letters, 2012, 3, 802-806.	1.8	9
59	Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System. Current Drug Targets, 2018, 19, 191-200.	2.1	9
60	A Chinese girl with mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) diagnosed via POLD1 mutation detection. Chinese Medical Journal, 2020, 133, 2009-2011.	2.3	8
61	Immune Cells Act as Promising Targets for the Treatment of Bone Metastasis. Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 221-233.	1.6	8
62	Bone Delivers Its Energy Information to Fat and Islets Through Osteocalcin. Orthopaedic Surgery, 2012, 4, 114-117.	1.8	7
63	Double suicide genes driven by kinase domain insert containing receptor promoter selectively kill human lung cancer cells. Genetic Vaccines and Therapy, 2011, 9, 6.	1.5	6
64	The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Frontiers in Endocrinology, 2022, 13, 856954.	3.5	6
65	A Review of the Clinical, Radiological and Biochemical Characteristics and Genetic Causes of High Bone Mass Disorders. Current Drug Targets, 2018, 19, 621-635.	2.1	5
66	Bone Metastasis-Related MicroRNAs: New Targets for Treatment?. Current Cancer Drug Targets, 2015, 15, 716-725.	1.6	5
67	A paternally inherited nonâ€sense variant c.424G>T (p.G142*) in the first exon of <i>XLαs</i> in an adult patient with hypophosphatemia and osteopetrosis. Clinical Genetics, 2020, 97, 712-722.	2.0	3
68	A novel heterozygous mutation c.680A>G (p. N227S) in SLC34A1 gene leading to autosomal dominant hypophosphatemia. Medicine (United States), 2019, 98, e15617.	1.0	2
69	A boy with mucopolysaccharidosis type II accompanied with a novel variation in heparan-N-sulfatase. Chinese Medical Journal, 2019, 132, 2254-2256.	2.3	1
70	Congenital insensitivity to pain with anhidrosis: A report of two unrelated Chinese families with novel mutations in NTRK1 gene. Medicina ClÂnica, 2021, 157, 451-453.	0.6	1
71	A novel JAG1 mutation causing Alagille syndrome presenting with giant hepatic nodules and discordant phenotype in monozygotic twins. Medicina ClÃnica, 2020, 155, 507-509.	0.6	1
72	FGF23 Actions in CKD-MBD and other Organs During CKD. Current Medicinal Chemistry, 2023, 30, 841-856.	2.4	1

#	Article	IF	CITATIONS
73	Loss-of-function of SHARPIN causes an osteopenic phenotype in mice. Bone, 2010, 47, S398.	2.9	0
74	Editorial: Novel Endocrine Functions of Bone Marrow Fat. Frontiers in Endocrinology, 2019, 10, 349.	3.5	0
75	A novel compound mutation in alpha-L-iduronidase gene causes mucopolysaccharidosis type I. Journal of Genetics, 2019, 98, 1.	0.7	0
76	The paradoxical coexistence of hypophosphatemic rickets and increased bone density in spine of a subject carrying a novel splice site mutation in PHEX. Chinese Medical Journal, 2019, 132, 2376-2377.	2.3	0
77	A novel JAG1 mutation causing Alagille syndrome presenting with giant hepatic nodules and discordant phenotype in monozygotic twins. Medicina ClÃnica (English Edition), 2020, 155, 507-509.	0.2	0
78	Articulation infection in patient with chronic granulomatous disease. Chinese Medical Journal, 2021, Publish Ahead of Print, 2492-2494.	2.3	0
79	Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome in a Chinese family: A case report and review of literature. World Journal of Clinical Cases, 2021, 9, 6393-6402.	0.8	0
80	The role of interleukin-6 and tumor necrosis factor alpha gene in fat and bone communication. Bone Abstracts, 0, , .	0.0	0
81	Signaling network of mirnas regulating bone metastasis in lung cancer. Bone Abstracts, 0, , .	0.0	0
82	Lung Cancer Derived Circulating miR-21 Promotes Bone Metastasis by Activating Differentiation of Monocytes to Osteoclasts. SSRN Electronic Journal, 0, , .	0.4	0
83	Congenital insensitivity to pain with anhidrosis: A report of two unrelated Chinese families with novel mutations in NTRK1 gene. Medicina ClÃnica (English Edition), 2021, 157, 451-453.	0.2	0
84	A novel compound mutation in alpha-L-iduronidase gene causes mucopolysaccharidosis type I. Journal of Genetics, 2019, 98, .	0.7	0