List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072988/publications.pdf Version: 2024-02-01

		1368	2323
364	46,912	108	199
papers	citations	h-index	g-index
382	382	382	32468
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Global Change Biology, 2022, 28, 1414-1432.	4.2	16
2	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2.2	11
3	Variation of nonâ€structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Functional Ecology, 2022, 36, 341-355.	1.7	9
4	Can large herbivores enhance ecosystem carbon persistence?. Trends in Ecology and Evolution, 2022, 37, 117-128.	4.2	49
5	Existing land uses constrain climate change mitigation potential of forest restoration in India. Conservation Letters, 2022, 15, .	2.8	13
6	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
7	Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. Global Change Biology, 2022, 28, 2895-2909.	4.2	8
8	Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 2022, 110, 876-888.	1.9	12
9	The role of large wild animals in climate change mitigation and adaptation. Current Biology, 2022, 32, R181-R196.	1.8	54
10	Tropical wood stores substantial amounts of nutrients, but we have limited understanding why. Biotropica, 2022, 54, 596-606.	0.8	8
11	Tropical forests in the deep human past. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200500.	1.8	10
12	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	3.4	8
13	Tropical tree mortality has increased with rising atmospheric water stress. Nature, 2022, 608, 528-533.	13.7	74
14	Improving landscapeâ€scale productivity estimates by integrating traitâ€based models and remotelyâ€sensed foliarâ€trait and canopyâ€structural data. Ecography, 2022, 2022, .	2.1	4
15	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
16	Tallo: A global tree allometry and crown architecture database. Global Change Biology, 2022, 28, 5254-5268.	4.2	24
17	The Great Intergenerational Robbery: A Call for Concerted Action Against Environmental Crises. Annual Review of Environment and Resources, 2022, 47, 1-4.	5.6	2
18	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286

#	Article	IF	CITATIONS
19	Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andes–Amazon elevational gradient. Journal of Vegetation Science, 2021, 32, e12925.	1.1	5
20	Does economic optimisation explain LAI and leaf trait distributions across an Amazon soil moisture gradient?. Global Change Biology, 2021, 27, 587-605.	4.2	4
21	The mechanical stability of the world's tallest broadleaf trees. Biotropica, 2021, 53, 110-120.	0.8	20
22	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	4.6	38
23	A distinct ecotonal tree community exists at central African forest–savanna transitions. Journal of Ecology, 2021, 109, 1170-1183.	1.9	17
24	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
25	Automated and accurate segmentation of leaf venation networks via deep learning. New Phytologist, 2021, 229, 631-648.	3.5	17
26	Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and Soil, 2021, 461, 43-61.	1.8	52
27	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	1.9	42
28	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Global Change Biology, 2021, 27, 1802-1819.	4.2	6
29	Assessing invertebrate herbivory in humanâ€modified tropical forest canopies. Ecology and Evolution, 2021, 11, 4012-4022.	0.8	5
30	Interactions between all pairs of neighboring trees in 16 forests worldwide reveal details of unique ecological processes in each forest, and provide windows into their evolutionary histories. PLoS Computational Biology, 2021, 17, e1008853.	1.5	1
31	Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environmental Research Letters, 2021, 16, 055006.	2.2	34
32	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	5.8	59
33	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	5.8	26
34	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
35	Fine root dynamics across pantropical rainforest ecosystems. Global Change Biology, 2021, 27, 3657-3680.	4.2	13
36	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37

YADVINDER MALHI

#	Article	IF	CITATIONS
37	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
38	Nature-based solutions can help cool the planet $\hat{a} \in \tilde{"}$ if we act now. Nature, 2021, 593, 191-194.	13.7	128
39	The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. Journal of Applied Ecology, 2021, 58, 1764-1775.	1.9	26
40	Individual tree detection and crown segmentation based on metabolic theory from airborne laser scanning data. Journal of Applied Remote Sensing, 2021, 15, .	0.6	3
41	Detecting vulnerability of humid tropical forests to multiple stressors. One Earth, 2021, 4, 988-1003.	3.6	41
42	Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
43	High aboveground carbon stock of African tropical montane forests. Nature, 2021, 596, 536-542.	13.7	65
44	Editorial: Tropical Montane Forests in a Changing Environment. Frontiers in Plant Science, 2021, 12, 712748.	1.7	14
45	Editorial: Intact Forests. Frontiers in Forests and Global Change, 2021, 4, .	1.0	1
46	The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of preâ€adapted clades?. New Phytologist, 2021, 232, 2506-2519.	3.5	4
47	Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 2021, 496, 119441.	1.4	6
48	Terrestrial laser scanning to reconstruct branch architecture from harvested branches. Methods in Ecology and Evolution, 2021, 12, 2487-2500.	2.2	10
49	Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environmental Research Letters, 2021, 16, 094051.	2.2	6
50	Major and persistent shifts in belowâ€ground carbon dynamics and soil respiration following logging in tropical forests. Global Change Biology, 2021, 27, 2225-2240.	4.2	27
51	Predicting tropical tree mortality with leaf spectroscopy. Biotropica, 2021, 53, 581-595.	0.8	3
52	The Role of Forest Elephants in Shaping Tropical Forest–Savanna Coexistence. Ecosystems, 2020, 23, 602-616.	1.6	33
53	Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.	3.0	40
54	Modelling the effect of the 2018 summer heatwave and drought on isoprene emissions in a UK woodland. Global Change Biology, 2020, 26, 2320-2335.	4.2	14

#	Article	IF	CITATIONS
55	Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Global Change Biology, 2020, 26, 989-1002.	4.2	37
56	Continuous Isoprene Measurements in a UK Temperate Forest for a Whole Growing Season: Effects of Drought Stress During the 2018 Heatwave. Geophysical Research Letters, 2020, 47, e2020GL088885.	1.5	11
57	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62
58	Examining land surface phenology in the tropical moist forest eco-zone of South America. International Journal of Biometeorology, 2020, 64, 1911-1922.	1.3	0
59	Linking functional traits to multiscale statistics of leaf venation networks. New Phytologist, 2020, 228, 1796-1810.	3.5	18
60	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	13.7	278
61	Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 2020, 11, 5978.	5.8	188
62	The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
63	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
64	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
65	Patterns and controls on fine-root dynamics along a rainfall gradient in Ghana. Trees - Structure and Function, 2020, 34, 917-929.	0.9	9
66	Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits. PLoS ONE, 2020, 15, e0228157.	1.1	8
67	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
68	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	1.5	57
69	Modeling Error Evaluation of Ground Observed Vegetation Parameters. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 4987-4994.	2.4	3
70	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	13.7	439
71	Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 2020, 11, 3346.	5.8	61
72	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62

#	Article	IF	CITATIONS
73	Assessment of Bias in Pan-Tropical Biomass Predictions. Frontiers in Forests and Global Change, 2020, 3, .	1.0	36
74	Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190104.	1.8	333
75	Pleistocene Arctic megafaunal ecological engineering as a natural climate solution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190122.	1.8	40
76	National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190126.	1.8	157
77	Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PLoS ONE, 2020, 15, e0231553.	1.1	54
78	The megabiota are disproportionately important for biosphere functioning. Nature Communications, 2020, 11, 699.	5.8	99
79	Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ, 2020, 8, e8732.	0.9	19
80	Resilience to climate shocks in the tropics. Environmental Research Letters, 2020, 15, 100203.	2.2	6
81	Title is missing!. , 2020, 15, e0231553.		Ο
82	Title is missing!. , 2020, 15, e0231553.		0
83	Title is missing!. , 2020, 15, e0231553.		0
84	Title is missing!. , 2020, 15, e0231553.		0
85	Seasonal changes in plant–water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies. Tree Physiology, 2019, 39, 104-112.	1.4	9
86	Leaf venation networks of Bornean trees: images and handâ€ŧraced segmentations. Ecology, 2019, 100, e02844.	1.5	7
87	Phenology and Seasonal Ecosystem Productivity in an Amazonian Floodplain Forest. Remote Sensing, 2019, 11, 1530.	1.8	16
88	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
89	Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environmental Research Letters, 2019, 14, 105002.	2.2	46
90	Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Science Advances, 2019, 5, eaax2546.	4.7	87

YADVINDER MALHI

#	Article	lF	CITATIONS
91	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	3.4	32
92	The persistence of carbon in the African forest understory. Nature Plants, 2019, 5, 133-140.	4.7	41
93	Extensive 21st entury Woody Encroachment in South America's Savanna. Geophysical Research Letters, 2019, 46, 6594-6603.	1.5	62
94	A New Architectural Perspective on Wind Damage in a Natural Forest. Frontiers in Forests and Global Change, 2019, 1, .	1.0	20
95	An architectural understanding of natural sway frequencies in trees. Journal of the Royal Society Interface, 2019, 16, 20190116.	1.5	32
96	The structures underpinning vulnerability: examining landscape-society interactions in a smallholder coffee agroforestry system. Environmental Research Letters, 2019, 14, 075006.	2.2	11
97	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
98	Carbon dynamics, net primary productivity and humanâ€appropriated net primary productivity across a forest–cocoa farm landscape in West Africa. Global Change Biology, 2019, 25, 2661-2677.	4.2	30
99	Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Science of the Total Environment, 2019, 666, 1301-1315.	3.9	22
100	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	3.0	75
101	Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Forest Ecology and Management, 2019, 439, 132-145.	1.4	39
102	Bryophyte stable isotope composition, diversity and biomass define tropical montane cloud forest extent. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182284.	1.2	13
103	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	0.8	19
104	Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances, 2019, 5, eaaw8114.	4.7	51
105	The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests. Biogeosciences, 2019, 16, 4463-4484.	1.3	15
106	Deliberation for wildfire risk management: Addressing conflicting views in the Chiquitania, Bolivia. Geographical Journal, 2019, 185, 38-54.	1.6	13
107	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
108	Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa. Grana, 2019, 58, 45-62.	0.4	1

#	Article	IF	CITATIONS
109	Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agricultural and Forest Meteorology, 2019, 265, 137-144.	1.9	54
110	Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytologist, 2019, 221, 1853-1865.	3.5	69
111	Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. Frontiers in Plant Science, 2019, 10, 1810.	1.7	23
112	New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus, 2018, 8, 20170052.	1.5	76
113	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
114	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	5.8	485
115	Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon elevation gradient. Journal of Ecology, 2018, 106, 1683-1699.	1.9	18
116	Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Global Change Biology, 2018, 24, 2913-2928.	4.2	98
117	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	2.2	78
118	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	1.0	31
119	Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India. Science of the Total Environment, 2018, 635, 1124-1131.	3.9	10
120	Fineâ€root exploitation strategies differ in tropical old growth and loggedâ€over forests in Ghana. Biotropica, 2018, 50, 606-615.	0.8	14
121	Impacts on terrestrial biodiversity of moving from a 2°C to a 1.5°C target. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160456.	1.6	24
122	Ancient deforestation in the green heart of Africa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3202-3204.	3.3	17
123	Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Clobal Change Biology, 2018, 24, 758-772.	4.2	16
124	What controls variation in carbon use efficiency among Amazonian tropical forests?. Biotropica, 2018, 50, 16-25.	0.8	28
125	Land Use Change in India (1700–2000) as Examined through the Lens of Human Appropriation of Net Primary Productivity. Journal of Industrial Ecology, 2018, 22, 1202-1212.	2.8	11
126	Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Global Change Biology, 2018, 24, e496-e510.	4.2	50

#	Article	IF	CITATIONS
127	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	0.7	20
128	Grass Species Flammability, Not Biomass, Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. Frontiers in Forests and Global Change, 2018, 1, .	1.0	43
129	Rethinking Fuelwood: People, Policy and the Anatomy of a Charcoal Supply Chain in a Decentralizing Peru. Forests, 2018, 9, 533.	0.9	5
130	Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 2018, 10, 1532.	1.8	22
131	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
132	Tropical forest leaves may darken in response to climate change. Nature Ecology and Evolution, 2018, 2, 1918-1924.	3.4	23
133	Widespread but heterogeneous responses of Andean forests to climate change. Nature, 2018, 564, 207-212.	13.7	184
134	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	1.4	23
135	New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170298.	1.8	21
136	Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170300.	1.8	24
137	Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170308.	1.8	29
138	Quantifying immediate carbon emissions from El Niñ0-mediated wildfires in humid tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170312.	1.8	64
139	Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170406.	1.8	25
140	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	1.8	41
141	Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE, 2018, 13, e0196974.	1.1	23
142	Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon. Biology and Fertility of Soils, 2018, 54, 897-907.	2.3	4
143	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	2.7	78
144	Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees - Structure and Function, 2018, 32, 1219-1231.	0.9	90

#	Article	IF	CITATIONS
145	Smallâ€scale indirect plant responses to insect herbivory could have major impacts on canopy photosynthesis and isoprene emission. New Phytologist, 2018, 220, 799-810.	3.5	25
146	<i>In Situ</i> Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3617-3627.	2.3	49
147	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	1.3	47
148	Impacts of fire on sources of soil <scp>CO</scp> ₂ efflux in a dry Amazon rain forest. Global Change Biology, 2018, 24, 3629-3641.	4.2	23
149	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
150	Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling. Remote Sensing, 2018, 10, 933.	1.8	94
151	Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist, 2017, 214, 1049-1063.	3.5	132
152	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	2.1	143
153	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	1.6	251
154	Predicting traitâ€environment relationships for venation networks along an Andesâ€Amazon elevation gradient. Ecology, 2017, 98, 1239-1255.	1.5	31
155	Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 449-469.	1.3	28
156	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	6.0	443
157	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 2017, 20, 730-740.	3.0	100
158	Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology, 2017, 32, 1581-1598.	1.9	104
159	Soil respiration and mass balance estimation of fine root production in Fitzroya cupressoides forests of southern Chile. Ecosphere, 2017, 8, e01640.	1.0	9
160	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2952-2965.	1.3	17
161	Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Tropical Conservation Science, 2017, 10, 194008291772066.	0.6	128
162	Assessing traitâ€based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 2017, 26, 1357-1373.	2.7	57

#	Article	IF	CITATIONS
163	The Concept of the Anthropocene. Annual Review of Environment and Resources, 2017, 42, 77-104.	5.6	126
164	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	0.7	5
165	Identifying ambassador species for conservation marketing. Global Ecology and Conservation, 2017, 12, 204-214.	1.0	73
166	Implications of improved representations of plant respiration in a changing climate. Nature Communications, 2017, 8, 1602.	5.8	100
167	The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 2017, 214, 1019-1032.	3.5	126
168	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 2017, 214, 973-988.	3.5	57
169	Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests. New Phytologist, 2017, 214, 1033-1048.	3.5	83
170	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	3.5	89
171	Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 2017, 214, 989-1001.	3.5	51
172	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€model intercomparison. Global Change Biology, 2017, 23, 191-208.	4.2	106
173	Impact of woody encroachment on soil organic carbon storage in the Lopé National Park, Gabon. Biotropica, 2017, 49, 9-12.	0.8	17
174	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	5.8	116
175	Drivers of metacommunity structure diverge for common and rare Amazonian tree species. PLoS ONE, 2017, 12, e0188300.	1.1	10
176	Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics, 2016, 4, 47-70.	1.0	60
177	Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK. Remote Sensing, 2016, 8, 609.	1.8	29
178	An integrated panâ€ŧropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	4.2	469
179	Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 2016, 7, 13717.	5.8	90
180	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43

#	Article	IF	CITATIONS
181	Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 2016, 104, 315-330.	1.9	38
182	Many shades of green: the dynamic tropical forest–savannah transition zones. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150308.	1.8	135
183	Megafauna in the Earth system. Ecography, 2016, 39, 99-108.	2.1	57
184	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecology and Evolution, 2016, 6, 5674-5689.	0.8	26
185	Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, 2016, 6, 33130.	1.6	413
186	Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Global Biogeochemical Cycles, 2016, 30, 700-715.	1.9	43
187	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
188	Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecology and Evolution, 2016, 6, 3417-3429.	0.8	24
189	Amazon forest response to repeated droughts. Clobal Biogeochemical Cycles, 2016, 30, 964-982.	1.9	201
190	Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 838-846.	3.3	366
191	Digital thermal monitoring of the Amazon forest: an intercomparison of satellite and reanalysis products. International Journal of Digital Earth, 2016, 9, 477-498.	1.6	15
192	Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochimica Et Cosmochimica Acta, 2016, 182, 155-172.	1.6	94
193	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	3.3	161
194	Clobal nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 868-873.	3.3	308
195	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	1.1	34
196	Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review, 2015, 17, 10-32.	0.3	50
197	Increased water use efficiency but contrasting tree growth patterns in <i>Fitzroya cupressoides</i> forests of southern Chile during recent decades. Journal of Geophysical Research C: Biogeosciences, 2015, 120, 2505-2524.	1.3	51
198	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	1.9	63

#	Article	IF	CITATIONS
199	Seeing Central African forests through their largest trees. Scientific Reports, 2015, 5, 13156.	1.6	114
200	Source and sink carbon dynamics and carbon allocation in the Amazon basin. Global Biogeochemical Cycles, 2015, 29, 645-655.	1.9	40
201	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	4.2	97
202	Collapse of the world's largest herbivores. Science Advances, 2015, 1, e1400103.	4.7	750
203	Allometry and growth of eight tree taxa in United Kingdom woodlands. Scientific Data, 2015, 2, 150006.	2.4	13
204	Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528, 119-122.	13.7	482
205	The Carbon Cycle of a Maritime Ancient Temperate Broadleaved Woodland at Seasonal and Annual Scales. Ecosystems, 2015, 18, 1-15.	1.6	24
206	Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods. Insectes Sociaux, 2015, 62, 141-150.	0.7	17
207	Clobal variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	3.5	350
208	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	4.2	146
209	Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82.	13.7	464
210	Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 2015, 8, 284-289.	5.4	337
211	A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.	1.9	55
212	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
213	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
214	Reply to 'Uncertain effects of nutrient availability on global forest carbon balance' and 'Data quality and the role of nutrients in forest carbon-use efficiency'. Nature Climate Change, 2015, 5, 960-961.	8.1	2
215	Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience, 2015, 8, 843-846.	5.4	109
216	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122

#	Article	IF	CITATIONS
217	Latitude, productivity and species richness. Global Ecology and Biogeography, 2015, 24, 107-117.	2.7	222
218	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
219	The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile. PLoS ONE, 2015, 10, e0137569.	1.1	24
220	The hydrological regime of a forested tropical Andean catchment. Hydrology and Earth System Sciences, 2014, 18, 5377-5397.	1.9	48
221	Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences, 2014, 11, 843-856.	1.3	100
222	Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 2014, 11, 6827-6840.	1.3	89
223	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	5.8	169
224	Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecology and Diversity, 2014, 7, 25-40.	1.0	41
225	The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecology and Diversity, 2014, 7, 55-69.	1.0	34
226	The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru). Plant Ecology and Diversity, 2014, 7, 71-83.	1.0	25
227	Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 125-142.	1.0	47
228	Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4, 471-476.	8.1	383
229	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Clobal Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
230	Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology and Diversity, 2014, 7, 143-160.	1.0	19
231	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	1.3	87
232	First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology, 2014, 30, 143-152.	0.5	37
233	Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru. Journal of Tropical Ecology, 2014, 30, 503-519.	0.5	22
234	The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014, 7, 85-105.	1.0	82

#	Article	IF	CITATIONS
235	Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology and Diversity, 2014, 7, 7-24.	1.0	52
236	The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia, 2014, 174, 295-306.	0.9	38
237	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	1.4	75
238	Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters, 2014, 17, 324-332.	3.0	176
239	Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change. Geophysical Research Letters, 2014, 41, 983-990.	1.5	12
240	Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology and Diversity, 2014, 7, 161-171.	1.0	89
241	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	3.0	63
242	Living on the edge: quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 2014, 29, 949-961.	1.9	33
243	Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecology, 2014, 39, 408-415.	0.7	33
244	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 2014, 506, 76-80.	13.7	398
245	Tropical Forests in the Anthropocene. Annual Review of Environment and Resources, 2014, 39, 125-159.	5.6	322
246	Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 2014, 7, 329-340.	1.0	35
247	Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest. Ecosystems, 2014, 17, 751.	1.6	28
248	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	4.7	208
249	Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes. Global Biogeochemical Cycles, 2014, 28, 480-496.	1.9	44
250	Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 107-123.	1.0	63
251	Allocation tradeâ€offs dominate the response of tropical forest growth to seasonal and interannual drought. Ecology, 2014, 95, 2192-2201.	1.5	86
252	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	1.0	45

#	Article	IF	CITATIONS
253	The Metabolism of a Human-Dominated Planet. , 2014, , 142-163.		8
254	The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 2013, 6, 761-764.	5.4	149
255	Spatial and temporal patterns of the recent warming of the Amazon forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5204-5215.	1.2	67
256	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	2.7	365
257	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	1.0	104
258	Scaleâ€dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 2013, 101, 1214-1224.	1.9	265
259	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
260	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	3.5	247
261	The impact of large animal extinctions on nutrient fluxes in early river valley civilizations. Ecosphere, 2013, 4, 1-17.	1.0	17
262	Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 2013, 58, 1658-1676.	1.2	120
263	What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 2013, 182-183, 128-144.	1.9	255
264	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	1.9	605
265	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	5.4	358
266	Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles, 2013, 27, 252-264.	1.9	57
267	The past, present and future of Africa's rainforests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120293.	1.8	20
268	African rainforests: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120312.	1.8	131
269	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	1.8	264
270	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	3.3	334

#	Article	IF	CITATIONS
271	Leakage effects in natural resource supply chains: a case study from the Peruvian commercial charcoal market. International Journal of Sustainable Development and World Ecology, 2013, 20, 336-348.	3.2	13
272	New views on "old―carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes. Geochemistry, Geophysics, Geosystems, 2013, 14, 1644-1659.	1.0	63
273	Annual budget and seasonal variation of aboveground and belowground net primary productivity in a lowland dipterocarp forest in Borneo. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1282-1296.	1.3	35
274	Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 2013, 10, 2255-2272.	1.3	52
275	Lateral Diffusion of Nutrients by Mammalian Herbivores in Terrestrial Ecosystems. PLoS ONE, 2013, 8, e71352.	1.1	76
276	Multi-temporal analysis of MODIS Land Products over the Amazon region. , 2012, , .		1
277	Smallholder REDD+ strategies at the forest–farm frontier: a comparative analysis of options from the Peruvian Amazon. Carbon Management, 2012, 3, 265-281.	1.2	5
278	Cloud frequency climatology at the Andes/Amazon transition: 2. Trends and variability. Journal of Geophysical Research, 2012, 117, .	3.3	14
279	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487
280	Cloud frequency climatology at the Andes/Amazon transition: 1. Seasonal and diurnal cycles. Journal of Geophysical Research, 2012, 117, .	3.3	15
281	Functional coordination between branch hydraulic properties and leaf functional traits in miombo woodlands: implications for water stress management and species habitat preference. Acta Physiologiae Plantarum, 2012, 34, 1701-1710.	1.0	17
282	A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote Sensing, 2012, 4, 703-725.	1.8	82
283	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
284	The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 2012, 100, 65-75.	1.9	238
285	The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of <scp>A</scp> mazonian plant species. Global Change Biology, 2012, 18, 2636-2647.	4.2	65
286	Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18, 2882-2898.	4.2	34
287	Dripâ€ŧips are Associated with Intensity of Precipitation in the Amazon Rain Forest. Biotropica, 2012, 44, 728-737.	0.8	25
288	Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15, 520-526.	3.0	273

#	Article	IF	CITATIONS
289	Calculating downward longwave radiation under clear and cloudy conditions over a tropical lowland forest site: an evaluation of model schemes for hourly data. Theoretical and Applied Climatology, 2012, 107, 461-477.	1.3	30
290	Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England. Biogeosciences, 2011, 8, 1595-1613.	1.3	51
291	ET come home: potential evapotranspiration in geographical ecology. Global Ecology and Biogeography, 2011, 20, 1-18.	2.7	279
292	Upslope migration of Andean trees. Journal of Biogeography, 2011, 38, 783-791.	1.4	306
293	Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. Journal of Biogeography, 2011, 38, 1164-1176.	1.4	30
294	The sensitivity of tropical leaf litter decomposition to temperature: results from a largeâ€scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 2011, 189, 967-977.	3.5	166
295	Termite Diversity along an Amazon-Andes Elevation Gradient, Peru. Biotropica, 2011, 43, 100-107.	0.8	72
296	The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3225-3245.	1.8	317
297	No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes. Ecosystems, 2010, 13, 62-74.	1.6	75
298	Ecosystem Carbon Storage Across the Grassland–Forest Transition in the High Andes of Manu National Park, Peru. Ecosystems, 2010, 13, 1097-1111.	1.6	88
299	The carbon balance of tropical forest regions, 1990–2005. Current Opinion in Environmental Sustainability, 2010, 2, 237-244.	3.1	114
300	Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 2010, 187, 733-750.	3.5	174
301	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	3.5	487
302	Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 2010, 16, 3176-3192.	4.2	333
303	Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Global Change Biology, 2010, 16, 3193-3204.	4.2	40
304	Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 2010, 16, 3171-3175.	4.2	240
305	The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Global Ecology and Biogeography, 2010, 19, 72-84.	2.7	79
306	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	2.7	32

YADVINDER MALHI

#	Article	IF	CITATIONS
307	Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 2010, 7, 43-55.	1.3	250
308	Temporal variation and climate dependence of soil respiration and its components along a 3000 m altitudinal tropical forest gradient. Global Biogeochemical Cycles, 2010, 24, .	1.9	65
309	Shifts in plant respiration and carbon use efficiency at a largeâ€scale drought experiment in the eastern Amazon. New Phytologist, 2010, 187, 608-621.	3.5	118
310	Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles, 2010, 24, .	1.9	182
311	Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 2009, 6, 2677-2708.	1.3	295
312	Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.	1.3	221
313	Climate dependence of heterotrophic soil respiration from a soilâ€ŧranslocation experiment along a 3000 m tropical forest altitudinal gradient. European Journal of Soil Science, 2009, 60, 895-906.	1.8	86
314	Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 2009, 15, 1255-1274.	4.2	280
315	The land–atmosphere water flux in the tropics. Global Change Biology, 2009, 15, 2694-2714.	4.2	198
316	Increasing carbon storage in intact African tropical forests. Nature, 2009, 457, 1003-1006.	13.7	816
317	Spatial patterns and recent trends in cloud fraction and cloudâ€related diffuse radiation in Amazonia. Journal of Geophysical Research, 2009, 114, .	3.3	24
318	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
319	Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20610-20615.	3.3	751
320	Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources. Geophysical Monograph Series, 2009, , 273-292.	0.1	23
321	Sources and sinks of trace gases in Amazonia and the Cerrado. Geophysical Monograph Series, 2009, , 337-354.	0.1	9
322	The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 2008, 311, 189-199.	1.8	134
323	Climate Change, Deforestation, and the Fate of the Amazon. Science, 2008, 319, 169-172.	6.0	1,383
324	Sample sizes for estimating key ecosystem characteristics in a tropical terra firme rainforest. Forest Ecology and Management, 2008, 255, 558-566.	1.4	28

#	Article	IF	CITATIONS
325	Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1779-1785.	1.8	290
326	Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, 2007, 34, .	1.5	399
327	Factors controlling spatioâ€ŧemporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. Journal of Geophysical Research, 2007, 112, .	3.3	99
328	The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Global Change Biology, 2007, 13, 2361-2378.	4.2	270
329	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	4.2	863
330	The odd man out? Might climate explain the lower tree αâ€diversity of African rain forests relative to Amazonian rain forests?. Journal of Ecology, 2007, 95, 1058-1071.	1.9	115
331	A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy. New Phytologist, 2007, 174, 697-703.	3.5	60
332	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	4.2	497
333	New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest. Transactions of the Institute of British Geographers, 2005, 30, 477-499.	1.8	50
334	The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Global Change Biology, 2005, 11, 1234-1246.	4.2	55
335	Gap-filling measurements of carbon dioxide storage in tropical rainforest canopy airspace. Agricultural and Forest Meteorology, 2005, 132, 305-314.	1.9	29
336	The carbon balance of the tropical forest biome. SEB Experimental Biology Series, 2005, , 217-34.	0.1	0
337	Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 353-365.	1.8	405
338	Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 437-462.	1.8	213
339	Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 2004, 10, 545-562.	4.2	633
340	Variation in potential for isoprene emissions among Neotropical forest sites. Global Change Biology, 2004, 10, 630-650.	4.2	96
341	Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 2004, 92, 929-944.	1.9	181
342	Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill Atmospheric Environment, 2004, 38, 6149-6156.	1.9	130

#	Article	IF	CITATIONS
343	Calibration of a land-surface model using data from primary forest sites in Amazonia. Theoretical and Applied Climatology, 2004, 78, 27.	1.3	20
344	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407.	1.8	370
345	Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 311-329.	1.8	588
346	A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 2003, 107, 1-48.	1.2	484
347	Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2925-2945.	1.6	68
348	CHANGES IN GROWTH OF TROPICAL FORESTS: EVALUATING POTENTIAL BIASES. , 2002, 12, 576-587.		148
349	Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. Journal of Geophysical Research, 2002, 107, LBA 33-1.	3.3	295
350	Energy and water dynamics of a central Amazonian rain forest. Journal of Geophysical Research, 2002, 107, LBA 45-1.	3.3	204
351	Forests, carbon and global climate. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 1567-1591.	1.6	187
352	Seasonality in CO2and H2O flux at an eastern Amazonian rain forest. Journal of Geophysical Research, 2002, 107, LBA 43-1.	3.3	150
353	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	1.1	285
354	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). , 2002, 13, 439.		35
355	Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies. Boundary-Layer Meteorology, 2000, 94, 297-331.	1.2	138
356	The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 1999, 22, 715-740.	2.8	696
357	Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant, Cell and Environment, 1998, 21, 953-968.	2.8	230
358	Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. , 1998, 282, 439-442.		724
359	The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biology, 1996, 2, 209-217.	4.2	196
360	The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biology, 1996, 2, 231-240.	4.2	416

#	Article	IF	CITATIONS
361	Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993. Science, 1995, 270, 778-780.	6.0	436
362	Net national metabolism as a fine-scale metric of energetic biophysical size in an industrialised country. Infrastructure Asset Management, 0, , 205301962110386.	1.2	0
363	Large contribution of recent photosynthate to soil respiration in tropical dipterocarp forest revealed by girdling. Journal of Ecology, 0, , .	1.9	2
364	Termite diversity is resilient to landâ€use change along a forest ocoa intensification gradient in Ghana, West Africa. Biotropica, 0, , .	0.8	0